Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Electronic Supplementary Material (ESI) for New Journal of Chemistry.

Supporting Informatin

Water-stable Ln^{III}-based coordination polymers displaying slow magnetic relaxation and luminescent sensing properties

Wei Gao, Ai-Mei Zhou, Han Wei, Cui-Li Wang, Jie-Ping Liu and Xiu-Mei Zhang*

Compounds	Sm-CP (1)	Eu-CP (2)	Gd-CP (3)	Tb-CP (4)	Dy-CP (5)	Но-СР (6)
Empirical formula	C ₄₂ H ₃₄ Sm ₂ N ₄ O ₁₉	C ₄₂ H ₃₄ Eu ₂ N ₄ O ₁₉	$C_{42}H_{34}Gd_2N_4O_{19}$) C ₄₂ H ₃₄ Tb ₂ N ₄ O ₁₉	C ₄₂ H ₃₄ Dy ₂ N ₄ O ₁	9C42H34H02N4O19
Formula weight	1199.45	1202.65	1213.23	1216.59	1223.73	1228.59
Crystal system	Monoclinic	Monoclinic	Monoclinic	Monoclinic	Monoclinic	Monoclinic
Space group	<i>P</i> 2 ₁ / <i>c</i>	<i>P</i> 2 ₁ / <i>c</i>	<i>P</i> 2 ₁ / <i>c</i>	$P2_{1}/c$	$P2_{1}/c$	$P2_{1}/c$
<i>a</i> /Å	16.044(3)	16.050(3)	16.026(2)	16.013(3)	16.044(6)	16.010(5)
b/Å	13.665(3)	13.653(3)	13.6349(17)	13.636(3)	13.656(5)	13.588(4)
c /Å	23.654(3)	23.678(3)	23.5391(19)	23.533(3)	23.514(7)	23.465(5)
eta/°	123.091(9)	123.116(9)	122.957(5)	123.104(9)	123.001(18)	123.070(14)
$V/\text{\AA}^3$	4344.8(14)	4345.8(14)	4315.9(8)	4304.4(14)	4321(3)	4278(2)
Ζ	4	4	4	4	4	4
<i>Dc</i> (g m ⁻³)	1.834	1.838	1.867	1.877	1.881	1.908
μ (mm ⁻¹)	2.762	2.945	3.133	3.345	3.518	3.759
<i>F</i> (000)	2360	2368	2375	2383	2391	2399

Table S1 Crystallographic Details for CPs 1-6.

Reflns collected	26993	26886	27013	26736	25556	26645
Unique reflections	9915	9932	9962	9877	9676	9801
GOF on F^2	1.032	1.032	0.997	0.995	1.013	1.031
R _{int}	0.0307	0.0311	0.0444	0.0327	0.0506	0.0377
R_1 [I>2 σ (I)]	0.0249	0.0248	0.0320	0.0243	0.0340	0.0281
wR_2 (all data)	0.0584	0.0584	0.0653	0.0565	0.0842	0.0630

Table S2 Selected bond lengths (Å) and angles (°) for Sm-CP (1)

Sm1-O7A	2.3086(19)	Sm1-O2	2.390(2)
Sm1-O11	2.3928(18)	Sm1-O8B	2.432(2)
Sm1-O4C	2.441(2)	Sm1-O14D	2.462(2)
Sm1-O13D	2.497(2)	Sm1-O9B	2.533(2)
Sm2-O18	2.347(3)	Sm2-O6	2.368(2)
Sm2-O3C	2.372(2)	Sm2-O12	2.473(2)
Sm2-O17	2.476(2)	Sm2-O16	2.476(2)
Sm2-O1	2.501(2)	Sm2-O2	2.626(2)
Sm2-O11	2.704(2)		
O7A-Sm1-O2	74.60(7)	O7A-Sm1-O11	140.90(7)
O2-Sm1-O11	74.35(7)	O7A-Sm1-O8B	81.14(7)
O2-Sm1-O8B	90.55(7)	O11-Sm1-O8B	122.19(7)
O7A-Sm1-O4C	85.20(8)	O2-Sm1-O4C	105.91(8)
O11-Sm1-O4C	81.07(7)	O8B-Sm1-O4C	154.99(7)
O7A-Sm1-O14D	127.30(7)	O2-Sm1-O14D	156.08(7)
O11-Sm1-O14D	88.52(7)	O8B-Sm1-O14D	84.52(8)
O4C-Sm1-O14D	87.28(8)	O7A-Sm1-O13D	74.71(7)
O2-Sm1-O13D	147.71(7)	O11-Sm1-O13D	137.75(7)

O8B-Sm1-O13D	75.01(8)	O4C-Sm1-O13D	81.24(8)
O14D-Sm1-O13D	52.59(7)	O7A-Sm1-O9B	124.35(8)
O2-Sm1-O9B	77.24(8)	O11-Sm1-O9B	70.07(7)
O8B-Sm1-O9B	52.13(7)	O4C-Sm1-O9B	149.10(7)
O14D-Sm1-O9B	81.32(8)	O13D-Sm1-O9B	112.91(7)
O18-Sm2-O6	73.35(9)	O18-Sm2-O3C	152.40(8)
O6-Sm2-O3C	79.37(9)	O18-Sm2-O12	81.96(8)
O6-Sm2-O12	136.53(8)	O3C-Sm2-O12	122.13(7)
O18-Sm2-O17	84.13(10)	O6-Sm2-O17	74.33(8)
O3C-Sm2-O17	92.57(9)	O12-Sm2-O17	67.92(8)
O18-Sm2-O16	89.30(9)	O6-Sm2-O16	73.68(8)
O3C-Sm2-O16	79.01(8)	O12-Sm2-O16	142.10(7)
O17-Sm2-O16	147.90(8)	O18-Sm2-O1	73.24(8)
O6-Sm2-O1	130.18(8)	O3C-Sm2-O1	124.15(8)
O12-Sm2-O1	72.12(7)	O17-Sm2-O1	136.25(8)
O16-Sm2-O1	70.05(7)	O18-Sm2-O2	123.77(8)
O6-Sm2-O2	140.91(7)	O3C-Sm2-O2	76.36(8)
O12-Sm2-O2	82.55(7)	O17-Sm2-O2	136.45(7)
O16-Sm2-O2	71.94(7)	O1-Sm2-O2	50.56(6)
O18-Sm2-O11	131.31(8)	O6-Sm2-O11	133.14(8)
O3C-Sm2-O11	71.96(7)	O12-Sm2-O11	50.25(7)
O17-Sm2-O11	70.86(7)	O16-Sm2-O11	132.81(7)
$01-Sm^2-011$	96.65(7)	O2-Sm2-O11	65.63(6)

Table S3 Selected bond lengths (Å) and angles (°) for Eu-CP (2)					
Eu1-O7A	2.303(2)	Eu1-O2	2.385(2)		
Eu1-O11	2.3872(18)	Eu1-O8B	2.423(2)		
Eu1-O4C	2.426(2)	Eu1-O14D	2.456(2)		
Eu1-O13D	2.488(2)	Eu1-O9B	2.528(2)		

Eu2-O18	2.336(2)	Eu2-O6	2.358(2)
Eu2-O3C	2.359(2)	Eu2-O12	2.462(2)
Eu2-O17	2.466(2)	Eu2-O16	2.469(2)
Eu2-O1	2.497(2)	Eu2-O2	2.609(2)
Eu2-O11	2.708(2)		
O7A-Eu1-O2	74.48(8)	O7A-Eu1-O11	140.88(7)
O2-Eu1-O11	74.41(7)	O7A-Eu1-O8B	81.10(7)
O2-Eu1-O8B	91.27(7)	O11-Eu1-O8B	122.62(7)
O7A-Eu1-O4C	85.14(8)	O2-Eu1-O4C	105.19(7)
O11-Eu1-O4C	80.73(7)	O8B-Eu1-O4C	154.88(7)
O7A-Eu1-O14D	127.77(7)	O2-Eu1-O14D	155.88(7)
O11-Eu1-O14D	88.02(7)	O8B-Eu1-O14D	84.33(8)
O4C-Eu1-O14D	87.69(8)	O7A-Eu1-O13D	74.96(7)
O2-Eu1-O13D	148.12(7)	O11-Eu1-O13D	137.16(7)
O8B-Eu1-O13D	75.19(7)	O4C-Eu1-O13D	81.00(7)
O14D-Eu1-O13D	52.83(7)	O7A-Eu1-O9B	124.28(7)
O2-Eu1-O9B	77.43(8)	O11-Eu1-O9B	70.19(7)
O8B-Eu1-O9B	52.43(7)	O4C-Eu1-O9B	149.07(7)
O14D-Eu1-O9B	81.16(8)	O13D-Eu1-O9B	113.41(7)
O18-Eu2-O6	73.09(9)	O18-Eu2-O3C	151.89(8)
O6-Eu2-O3C	79.07(9)	O18-Eu2-O12	82.00(8)
O6-Eu2-O12	136.34(8)	O3C-Eu2-O12	122.30(8)
O18-Eu2-O17	84.32(10)	O6-Eu2-O17	74.34(8)
O3C-Eu2-O17	91.97(9)	O12-Eu2-O17	67.89(8)
O18-Eu2-O16	89.45(9)	O6-Eu2-O16	73.87(8)
O3C-Eu2-O16	79.06(8)	O12-Eu2-O16	142.11(7)
O17-Eu2-O16	148.05(8)	O18-Eu2-O1	73.07(8)
O6-Eu2-O1	129.73(8)	O3C-Eu2-O1	124.77(8)

O12-Eu2-O1	72.45(7)	O17-Eu2-O1	136.52(8)
O16-Eu2-O1	69.75(7)	O18-Eu2-O2	123.88(8)
O6-Eu2-O2	141.11(7)	O3C-Eu2-O2	76.91(8)
O12-Eu2-O2	82.54(7)	O17-Eu2-O2	136.21(7)
O16-Eu2-O2	71.87(7)	O1-Eu2-O2	50.82(6)
O18-Eu2-O11	131.36(8)	O6-Eu2-O11	133.06(8)
O3C-Eu2-O11	72.12(7)	O12-Eu2-O11	50.32(6)
O17-Eu2-O11	70.55(7)	O16-Eu2-O11	132.74(7)
O1-Eu2-O11	97.21(7)	O2-Eu2-O11	65.70(6)
Symmetry codes: A : ->	x, y-1/2, -z+1/2; B	: x, y-1, z; C: -x, y+1/2, -	z+1/2; D: -x, -y, -z
Table S4 Selected bond	d lengths (Å) and a	angles (°) for Gd-CP (3)	
Gd1-O7A	2.285(3)	Gd1-O2	2.366(2)
Gd1-O11	2.372(2)	Gd1-O4B	2.402(2)
Gd1-O8C	2.405(2)	Gd1-O14D	2.444(3)
Gd1-O13D	2.476(2)	Gd1-09B	2.520(3)
Gd2-O18	2.329(3)	Gd2-O3B	2.345(3)
Gd2-O6	2.347(3)	Gd2-O12	2.439(3)
Gd2-O17	2.446(3)	Gd2-O16	2.448(3)
Gd2-O1	2.486(2)	Gd2-O2	2.601(2)
Gd2-O11	2.693(3)		
O7A-Gd1-O2	74.67(9)	O7A-Gd1-O11	140.70(9)
O2-Gd1-O11	73.95(9)	O7A-Gd1-O4B	84.89(10)
O2-Gd1-O4B	104.47(9)	O11-Gd1-O4B	80.66(9)
O7A-Gd1-O8C	81.32(9)	O2-Gd1-O8C	92.18(9)
O11-Gd1-O8C	122.79(8)	O4B-Gd1-O8C	154.74(9)
O7A-Gd1-O14D	127.97(9)	O2-Gd1-O14D	155.74(9)
O11-Gd1-O14D	87.94(9)	O4B-Gd1-O14D	87.93(10)
O8C-Gd1-O14D	84.08(10)	07A-Gd1-013D	74.81(9)

O2-Gd1-O13D	148.32(9)	O11-Gd1-O13D	137.30(9)
O4B-Gd1-O13D	80.99(9)	O8C-Gd1-O13D	75.03(9)
O14D-Gd1-O13D	53.17(9)	O7A-Gd1-O9C	124.05(9)
O2-Gd1-O9C	77.32(9)	O11-Gd1-O9C	70.34(8)
O4B-Gd1-O9C	149.36(9)	08C-Gd1-09C	52.44(8)
O14D-Gd1-O9C	81.49(10)	O13D-Gd1-O9C	113.87(9)
O18-Gd2-O3B	151.16(10)	O18-Gd2-O6	72.92(10)
O3B-Gd2-O6	78.51(10)	O18-Gd2-O12	82.27(10)
O3B-Gd2-O12	122.59(9)	O6-Gd2-O12	136.32(10)
O18-Gd2-O17	84.79(12)	O3B-Gd2-O17	91.31(12)
O6-Gd2-O17	74.30(11)	O12-Gd2-O17	68.02(10)
O18-Gd2-O16	89.27(11)	O3B-Gd2-O16	79.04(10)
O6-Gd2-O16	73.93(10)	O12-Gd2-O16	142.12(9)
O17-Gd2-O16	148.03(10)	O18-Gd2-O1	72.85(10)
O3B-Gd2-O1	125.52(10)	O6-Gd2-O1	129.65(10)
O12-Gd2-O1	72.37(9)	O17-Gd2-O1	136.59(10)
O16-Gd2-O1	69.85(9)	O18-Gd2-O2	123.99(9)
O3B-Gd2-O2	77.49(9)	O6-Gd2-O2	141.37(9)
O12-Gd2-O2	82.29(9)	O17-Gd2-O2	135.76(10)
O16-Gd2-O2	72.12(9)	O1-Gd2-O2	51.15(8)
O18-Gd2-O11	131.83(10)	O3B-Gd2-O11	72.35(9)
O6-Gd2-O11	133.21(10)	O12-Gd2-O11	50.44(8)
O17-Gd2-O11	70.69(9)	O16-Gd2-O11	132.38(8)
O1-Gd2-O11	97.12(8)	O2-Gd2-O11	65.11(8)
Symmetry codes: A : -x,	y-1/2, -z+1/2; B: :	x, y-1, z; C: -x, y+1/2, -z	z+1/2; D: -x, -y, -z
Table S5 Selected bond	lengths (Å) and ar	ngles (°) for Tb-CP (4)	
Tb1-O7A	2.2769(19)	Tb1-O11	2.3502(18)
Tb1-O2	2.355(2)	Tb1-O4B	2.390(2)

2.398(2)

Tb1-O8C

Tb1-O14D

2.422(2)

Tb1-O13D	2.460(2)	Tb1-O9C	2.502(2)
Tb2-O18	2.304(3)	Tb2-O3B	2.316(3)
Tb2-O6	2.344(3)	Tb2-O12	2.424(2)
Tb2-O17	2.427(3)	Tb2-O16	2.436(2)
Tb2-O1	2.472(2)	Tb2-O2	2.583(2)
Tb2-O11	2.726(2)		
O7A-Tb1-O11	141.13(7)	O7A-Tb1-O2	74.85(8)
O11-Tb1-O2	74.23(7)	O7A-Tb1-O4B	84.74(8)
O11-Tb1-O4B	79.99(7)	O2-Tb1-O4B	103.18(7)
O7A-Tb1-O8C	80.99(7)	O11-Tb1-O8C	123.45(7)
O2-Tb1-O8C	92.92(7)	O4B-Tb1-O8C	154.89(7)
O7A-Tb1-O14D	128.49(7)	O11-Tb1-O14D	86.84(7)
O2-Tb1-O14D	155.28(7)	O4B-Tb1-O14D	88.66(8)
O8C-Tb1-O14D	84.26(8)	O7A-Tb1-O13D	75.01(7)
O11-Tb1-O13D	136.27(7)	O2-Tb1-O13D	148.94(7)
O4B-Tb1-O13D	81.31(8)	O8C-Tb1-O13D	75.11(8)
O14D-Tb1-O13D	53.50(7)	O7A-Tb1-O9C	123.86(8)
O11-Tb1-O9C	70.68(7)	O2-Tb1-O9C	77.47(8)
O4B-Tb1-O9C	149.40(7)	O8C-Tb1-O9C	52.77(7)
O14D-Tb1-O9C	81.38(8)	O13D-Tb1-O9C	114.17(7)
O18-Tb2-O3B	151.19(9)	O18-Tb2-O6	72.59(9)
O3B-Tb2-O6	78.71(9)	O18-Tb2-O12	81.86(8)
O3B-Tb2-O12	122.35(7)	O6-Tb2-O12	136.49(8)
O18-Tb2-O17	84.54(10)	O3B-Tb2-O17	90.26(10)
O6-Tb2-O17	74.47(9)	O12-Tb2-O17	68.43(8)
O18-Tb2-O16	90.30(9)	O3B-Tb2-O16	79.09(8)
O6-Tb2-O16	73.52(8)	O12-Tb2-O16	142.43(8)
O17-Tb2-O16	147.56(9)	O18-Tb2-O1	73.19(9)

O3B-Tb2-O1	125.93(9)	O6-Tb2-O1	129.04(8)
O12-Tb2-O1	72.47(7)	O17-Tb2-O1	137.21(8)
O16-Tb2-O1	70.01(7)	O18-Tb2-O2	124.50(8)
O3B-Tb2-O2	77.87(8)	O6-Tb2-O2	141.51(7)
O12-Tb2-O2	82.00(7)	O17-Tb2-O2	135.40(8)
O16-Tb2-O2	72.35(7)	O1-Tb2-O2	51.24(6)
O18-Tb2-O11	131.24(9)	O3B-Tb2-O11	72.28(8)
O3C-Tb2-O11	133.99(9)	O12-Tb2-O11	50.34(7)
O17-Tb2-O11	70.89(8)	O16-Tb2-O11	132.02(8)
O1-Tb2-O11	96.97(8)	O2-Tb2-O11	64.56(7)
Symmetry codes: A : -	-x, y-1/2, -z+1/2; B:	x, y-1, z; C: -x, y+1/2, -	z+1/2; D: -x, -y, -z
Table S6 Selected bor	nd lengths (Å) and a	ngles (°) for Dy-CP (5)	
Dy1-O7A	2.267(3)	Dy1-O2	2.348(3)
Dy1-O11	2.347(3)	Dy1-O4B	2.379(3)
Dy1-O8C	2.389(3)	Dy1-O14D	2.414(3)
Dy1-O13D	2.460(3)	Dy1-O9C	2.490(3)
Dy2-O18	2.297(4)	Dy2-O3B	2.303(3)
Dy2-O6	2.344(3)	Dy2-O12	2.413(3)
Dy2-O17	2.416(3)	Dy2-O16	2.425(3)
Dy2-O1	2.465(3)	Dy2-O2	2.580(3)
Dy2-O11	2.743(3)		
O7A-Dy1-O2	74.80(11)	O7A-Dy1-O11	141.30(10)
O2-Dy1-O11	74.45(10)	O7A-Dy1-O4B	84.39(11)
O2-Dy1-O4B	102.47(10)	O11-Dy1-O4B	79.89(10)
O7A-Dy1-O8C	81.11(9)	O2-Dy1-O8C	93.70(10)
O11-Dy1-O8C	123.74(9)	O4B-Dy1-O8C	154.63(11)
O7A-Dy1-O14D	128.81(10)	O2-Dy1-O14D	155.06(10)
O11-Dy1-O14D	86.32(10)	O4B-Dy1-O14D	89.29(11)

O8C-Dy1-O14D	83.79(11)	O7A-Dy1-O13D	75.12(10)
O2-Dy1-O13D	149.20(9)	O11-Dy1-O13D	135.60(10)
O4B-Dy1-O13D	81.02(11)	O8C-Dy1-O13D	75.21(11)
O14D-Dy1-O13D	53.73(9)	O7A-Dy1-O9C	123.96(11)
O2-Dy1-O9C	77.72(9)	O11-Dy1-O9C	70.72(9)
O4B-Dy1-O9C	149.51(9)	08C-Dy1-O9C	53.05(9)
O14D-Dy1-O9C	81.07(12)	O13D-Dy1-O9C	114.62(10)
O18-Dy2-O3B	150.88(12)	O18-Dy2-O6	72.81(12)
O3B-Dy2-O6	78.12(12)	O18-Dy2-O12	81.92(11)
O3B-Dy2-O12	122.09(11)	O6-Dy2-O12	136.74(10)
O18-Dy2-O17	84.77(14)	O3B-Dy2-O17	89.10(14)
O6-Dy2-O17	74.31(11)	O12-Dy2-O17	68.82(11)
O18-Dy2-O16	90.56(13)	O3B-Dy2-O16	79.52(12)
O6-Dy2-O16	73.58(10)	O12-Dy2-O16	142.30(10)
O17-Dy2-O16	147.49(11)	O18-Dy2-O1	73.20(12)
O3B-Dy2-O1	126.74(11)	O6-Dy2-O1	128.99(12)
O12-Dy2-O1	72.56(10)	O17-Dy2-O1	137.68(12)
O16-Dy2-O1	69.90(10)	O18-Dy2-O2	124.80(11)
O3B-Dy2-O2	78.34(11)	O6-Dy2-O2	141.41(10)
O12-Dy2-O2	81.84(10)	O17-Dy2-O2	135.14(10)
O16-Dy2-O2	72.38(10)	O1-Dy2-O2	51.61(9)
O18-Dy2-O11	131.11(10)	O3B-Dy2-O11	72.28(10)
O3C-Dy2-O11	133.87(11)	O12-Dy2-O11	50.17(10)
O17-Dy2-O11	70.74(11)	O16-Dy2-O11	131.89(10)
O1-Dy2-O11	97.12(10)	O2-Dy2-O11	64.40(8)

Symmetry codes: A : -x, y-1/2, -z+1/2; B: x, y-1, z; C: -x, y+1/2, -z+1/2; D: -x, -y, -z

Table S7 Selected bond lengths (Å) and angles (°) for Ho-CP (6)					
Ho1-O7A	2.254(2)	Ho1-O2	2.334(2)		
Ho1-O11	2.334(2)	Ho1-O4B	2.362(3)		

Ho1-O8C	2.373(3)	Ho1-O14D	2.397(2)
Ho1-O13D	2.444(3)	Но1-О9С	2.482(3)
Ho2-O18	2.286(3)	Но2-ОЗВ	2.287(3)
Но2-Об	2.333(3)	Ho2-O12	2.392(2)
Ho2-O17	2.399(3)	Ho2-O16	2.402(3)
Ho2-O1	2.444(3)	Но2-О2	2.557(2)
Ho2-O11	2.744(3)		
O7A-Ho1-O2	74.81(9)	O7A-Ho1-O11	141.30(9)
O2-Ho1-O11	74.56(9)	O7A-Ho1-O4B	84.36(9)
O2-Ho1-O4B	101.87(9)	O11-Ho1-O4B	79.39(9)
O7A-Ho1-O8C	80.92(9)	O2-Ho1-O8C	94.13(9)
O11-Ho1-O8C	124.32(8)	O4B-Ho1-O8C	154.60(9)
O7A-Ho1-O14D	129.11(9)	O2-Ho1-O14D	154.85(8)
O11-Ho1-O14D	85.88(9)	O4B-Ho1-O14D	89.60(10)
O8C-Ho1-O14D	83.85(10)	O7A-Ho1-O13D	75.14(9)
O2-Ho1-O13D	149.36(8)	O11-Ho1-O13D	135.14(9)
O4B-Ho1-O13D	80.96(9)	O8C-Ho1-O13D	75.33(9)
O14D-Ho1-O13D	54.03(8)	O7A-Ho1-O9C	123.44(9)
O2-Ho1-O9C	77.31(9)	O11-Ho1-O9C	71.15(9)
O4B-Ho1-O9C	149.71(9)	O8C-Ho1-O9C	53.24(8)
O14D-Ho1-O9C	81.54(10)	O13D-Ho1-O9C	115.34(9)
O18-Ho2-O3B	150.79(10)	O18-Ho2-O6	72.57(10)
ОЗВ-Но2-Об	78.25(10)	O18-Ho2-O12	81.76(10)
O3B-Ho2-O12	122.12(9)	Об-Но2-О12	136.70(9)
O18-Ho2-O17	85.10(12)	O3B-Ho2-O17	88.47(12)
Об-Но2-О17	74.58(10)	О12-Но2-О17	68.91(11)
O18-Ho2-O16	91.15(11)	O3B-Ho2-O16	79.22(10)
Об-Но2-О16	73.51(10)	О12-Но2-О16	142.46(10)

О17-Но2-О16	147.50(11)	O18-Ho2-O1	73.36(10)
O3B-Ho2-O1	126.83(10)	O6-Ho2-O1	128.66(10)
О12-Но2-О1	72.67(9)	O17-Ho2-O1	138.10(11)
О16-Но2-О1	69.99(9)	O18-Ho2-O2	125.13(9)
O3B-Ho2-O2	78.37(10)	Об-Но2-О2	141.54(8)
О12-Но2-О2	81.75(9)	O17-Ho2-O2	134.52(10)
О16-Но2-О2	72.42(9)	O1-Ho2-O2	51.77(8)
О18-Но2-О11	130.91(9)	O3B-Ho2-O11	72.25(8)
O6-Ho2-O11	133.95(9)	O12-Ho2-O11	50.19(8)
О17-Но2-О11	70.15(9)	O16-Ho2-O11	131.77(8)
O1-Ho2-O11	97.38(8)	O2-Ho2-O11	64.38(7)

Symmetry codes: A : -x, y-1/2, -z+1/2; B: x, y-1, z; C: -x, y+1/2, -z+1/2; D: -x, -y, -z.

Fig. S1 The coordination modes of L ligand.

Fig. S2 The 3D packing of the layers in Eu-CP (2) through hydrogen bonding interactions.

Fig. S3 PXRD patterns of CPs 1-6.

Fig. S4 TGA Plots of CPs 1-6.

Fig. S5 The ac susceptibilities of Ho-CP (6) measured at 2 K under Hdc = 0 fields.

Fig. S6 Solid state emission and excitation spectra of the L ligand at 298 K.

Fig. S7 Solid sample emission spectra of Eu-CP (2) and Tb-CP (4) under room temperature.

Fig. S9 Decay time of Tb-CP (4).

Fig. S10 Luminescence spectra of Eu-CP (**2**) (a) and Tb-CP (**4**) (b) dispersed in aqueous solution in the presence of a mixture of other metal cations (K⁺, Li⁺, Mg²⁺, Na⁺, Al³⁺, Cr³⁺, Mg²⁺, Zn²⁺, Ag⁺, Cd²⁺, Ni²⁺, Cu²⁺, Hg²⁺, Fe²⁺) and a mixture of other metal cations with Fe³⁺ ions. The concentration and volume for both Fe³⁺ and the interfering cations were1 mM and 3 mL.

Fig. S11 The PXRD data of the as-synthesized Eu-CP (2) (a) and Tb-CP (4) (b) after Fe^{3+} , MO_4^- , CrO_4^{2-} , $Cr_2O_7^{2-}$ and TNP sensing process, with the simulated result as reference.

Fig. S12 UV-vis spectra of Eu-CP (2) (a) and Tb-CP (4) (b) containing different cations (1 mM) and corresponding excitation spectrum.

Fig. S13 Luminescence spectra of Eu-CP (**2**) (a) and Tb-CP (**4**) (b) dispersed in aqueous solution in the presence of a mixture of other anions $(IO_3^-, SO_4^{2-}, I^-, NO_3^-, CIO_3^-, CI^-, CO_3^{2-}, Br^-))$ and a mixture of other anions with $CrO_4^{2-}, Cr_2O_7^{2-}$ or MnO_4^- ions. The concentration and volume for both $CrO_4^{2-}/Cr_2O_7^{2-}/MnO_4^-$ and the interfering cations were1 mM and 3 mL.

Fig. S14 UV-vis spectra of Eu-CP (**2**) (a) and Tb-CP (**4**) (b) containing different anions (1 mM) and corresponding excitation spectrum.

Fig. S15 UV-vis spectra of Eu-CP (2) (a) and Tb-CP (4) (b) containing different anions (1 mM) and corresponding excitation spectrum.