Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Interplay between porous texture and surface-active sites for efficient oxygen reduction reactions in N-inherited carbon

Deviprasath Chinnadurai, ^a Rajmohan Rajendiran, ^a Aravindha Raja Selvaraj, ^a Hee-Je Kim, ^a Kandasamy Prabakar. ^{a*}

^{a.} Department of Electrical Engineering, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan-46241, Republic of Korea.

Figure S1. High magnification FE-SEM images of CK and CAN samples

Sample	C 1s	O 1s	N 1s
СК	92.0	6.9	1.1
CNA	85.6	12.0	2.4
CAIR	90.6	7.8	1.6

Table S1 Quantitative analysis of C, O and N from XPS analysis

Table S2 Deconvoluted N peaks from XPS analysis.

Sample	Pyridinic-N	Pyrrolic-N	Quaternary- N	Oxidized-N
СК	28.3	27.7	21.2	22.8
CNA	26.4	46.6	27.0	-
CAIR	26.6	25.1	35.1	13.2

Figure S3. Transferred electron numbers after cycling

Catalyst	E _{onset} (V vs RHE)	E _{1/2} (V vs RHE)	References
Okra derived carbon	0.975	0.86	1
Seaweed-Derived Nitrogen-Rich Porous Biomass Carbon	1.01	-	2
Protein hydrogel networks derived porous carbon	0.93	0.83	3
Carbon Materials Derived from Cellulose	0.83	81	4
Ni and P doped carbon from waste biomass	0.81	0.67	5
N, P and Fe Carbon derived from plant biomass	0.957	0.852	6
Lignosulfonate biomass derived N and S co- doped porous carbon	0.80	-	7
Egg-Derived Mesoporous Carbon	0.84	0.69	8
peanut shell-based graphitic carbon	0.91	0.81	9
protein-rich enoki mushroom biomass to a nitrogen-doped carbon	0.94	0.81	10

Mandarin Biomass derived N- inherited	0.87	0.75	This work
carbon			

Figure S4. Wettability Contact angle measurement of carbon samples.

References

- 1. R. F. Wang, H. Wang, T. B. Zhou, J. L. Key, Y. J. Ma, Z. Zhang, Q. Z. Wang and S. Ji, *Journal of Power Sources*, 2015, **274**, 741-747.
- 2. L. B. Zeng, X. Y. Li, S. Y. Fan, J. C. Mu, M. C. Qin, X. Y. Wang, G. Q. Gan, M. Tade and S. M. Liu, *Acs Sustainable Chemistry & Engineering*, 2019, **7**, 5057-5064.
- 3. L. Q. Wang, K. X. Liang, L. Deng and Y. N. Liu, *Applied Catalysis B-Environmental*, 2019, **246**, 89-99.
- 4. A. Wütscher, T. Eckhard, D. Hiltrop, K. Lotz, W. Schuhmann, C. Andronescu and M. J. C. Muhler, 2019, **6**, 514-521.
- 5. V. C. Hoang, V. G. Gomes and K. N. Dinh, *Electrochimica Acta*, 2019, **314**, 49-60.
- 6. W. Wan, Q. Wang, L. Zhang, H.-W. Liang, P. Chen and S.-H. J. J. o. M. C. A. Yu, 2016, **4**, 8602-8609.
- 7. M. L. Zhang, Y. L. Song, H. C. Tao, C. Yan, J. Masa, Y. C. Liu, X. Y. Shi, S. Z. Liu, X. Zhang and Z. Y. Sun, *Sustainable Energy & Fuels*, 2018, **2**, 1820-1827.
- 8. H. Wu, J. Geng, H. Ge, Z. Guo, Y. Wang and G. J. A. E. M. Zheng, 2016, **6**, 1600794.
- 9. Y. L. Wu, Y. L. Chen, H. Q. Wang, C. M. Wang, A. S. Wang, S. Zhao, X. Y. Li, D. F. Sun and J. Z. Jiang, *Journal of Materials Chemistry A*, 2018, **6**, 12018-12028.
- 10. C. Guo, W. Liao, Z. Li, L. Sun and C. J. N. Chen, 2015, **7**, 15990-15998.