Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Supporting information

Vinylimidazole coordination modes to Pt and Au metal centers

Sirpa Jääskeläinen, Igor O. Koshevoy, Sari Suvanto, Tiina Ryhänen and Pipsa Hirva Department of Chemistry, University of Eastern Finland, P.O. Box 111, Fi-80101 Joensuu, Finland

E-mail: sirpa.jaaskelainen@uef.fi

Figure S1.	Bond paths and bond critical points (BCPs = small light green balls) in the
	extended model of the crystal structure of 2 .

- Figure S2. ¹H nmr spectra for 1-vinylimidazole and the complexes 1 4.
- Figure S3. ¹³C nmr spectra for 1-vinylimidazole
- **Table S1**. ¹³C nmr spectra for 1-vinylimidazole and the complexes 1 4.
- Figure S4. Experimental and simulated Raman spectrum of 1 at the region 800-1600 cm⁻
- Figure S5. Experimental and simulated Raman spectrum of 1 at the region 100-600 cm⁻¹
- Figure S6. Experimental IR spectrum of Vinyl imidazole and complexes 1 4.
- Figure S7. Simulated IR spectra of vinylimidazole and protonated vinylimidazole.
- Figure S8. Simulated IR spectra of optimized structures of 1 and 2.
- **Table S2.**Bond length and angle data for 1 4

Figure S1. Bond paths and bond critical points (BCPs = small light green balls) in the extended model of the crystal structure of **2**. The numbering scheme of the BCPs is followed in Table 1.

Figure S3. ¹³C{¹H} and ¹³C NMR spectra for vinylimidazole (a,b) and Hvinylimidazole (b,c)

Table S1. Experimental (d_6 -DMSO) and calculated^{68-70 13}C spectra for vinylimidazole and compounds 1-4.

Carbon	-				
Compound	2	4	5	6	7
Exp. Vinylimidazole	136.6	129.9	116.1	129.6	100.8
Calc. Vinylimidazole ⁶⁸⁻⁷⁰	136.2	130.2	115.8	129.5	101.4
Exp. Vinylimidazole+HCl	136.1	129.5	116.9	127.4	102.9
1	138.0	128.9	118.6	120.8	108.5
2	139.9	130.0	118.4	129.2	106.3
3	134.8	128.9	118.6	120.9	108.6
4	134.9	128.9	118.7	120.9	108.7

Figure S4. Experimental and simulated Raman spectrum of 1 at the region 800-1600 cm⁻

Figure S5. Experimental and simulated Raman spectrum of 1 at the region 100-600 cm⁻¹

с

Figure S6. Experimental IR spectrum of

a Vinylimidazole

- b [PtCl₃(Hvinylimidazole)] (1) v(N-H) 3281, v(C=C,vinyl) 1437 cm⁻¹.
- c $[Au(vinylimidazole)_2]^+[AuBr_2]^-$ (2) v(C=C,vinyl) 1640 cm⁻¹.
- d [Hvinylimidazole]⁺[AuCl₄]⁻ (3) v(N-H) 3254, v(C=C) 1640 cm⁻¹.
- e [Hvinylimidazole]⁺[AuBr₄]⁻(4) v(N-H) 3256, v(C=C) 1640 cm⁻¹.

	LH	L
ν(N-H)	3431	

vC_Hring	3102	3062
v(C=C)vinyl	1624	1626
v(C-H)vinyl		3080

Figure S7. Simulated IR spectrum of vinylimidazole and protonated vinylimidazole.

	1	2
ν(N-H)	3468	
vC_Hring	3141	2967
v(C=C)vinyl	1441	1632
v(C-H)vinyl	3055	3083

Figure S8. Simulated IR spectra of optimized structures of $[PtCl_3(Hvinylimidazole)]$ (1) and $[Au(vinylimidazole)_2]^+[AuBr_2]^-$ (2).

Table S2.Bond length and angle data for 1-4

Selected bond lengths	[Å] and angles	[°] for 1

C(2)-N(3)	1.322(2)	
C(2)-N(1)	1.336(2)	
C(4)-C(5)	1.351(2)	
C(4)-N(3)	1.371(2)	
C(5)-N(1)	1.385(2)	
C(6)-C(7)	1.395(2)	
C(6)-N(1)	1.420(2)	
C(6)-Pt(1)	2.1358(17)	
C(7)-Pt(1)	2.1092(17)	
Cl(1)-Pt(1)	2.3056(5)	
Cl(2)-Pt(1)	2.2972(5)	
Cl(3)-Pt(1)	2.2922(5)	
N(3)-C(2)-N(1)	108.03(15)	
C(5)-C(4)-N(3)	106.98(16)	
C(4)-C(5)-N(1)	106.74(15)	
C(7)-C(6)-N(1)	122.77(15)	
C(7)-C(6)-Pt(1)	69.79(10)	
N(1)-C(6)-Pt(1)	115.11(11)	
C(6)-C(7)-Pt(1)	71.86(10)	
C(2)-N(1)-C(5)	108.62(14)	
C(2)-N(1)-C(6)	127.33(15)	
C(5)-N(1)-C(6)	124.02(14)	
C(2)-N(3)-C(4)	109.62(14)	
C(7)-Pt(1)-C(6)	38.35(7)	
C(7)-Pt(1)-Cl(3)	88.65(5)	
C(6)-Pt(1)-Cl(3)	93.70(4)	
C(7)-Pt(1)-Cl(2)	90.79(5)	
C(6)-Pt(1)-Cl(2)	87.02(4)	
Cl(3)-Pt(1)-Cl(2)	178.052(17)	

C(7)-Pt(1)-Cl(1)	160.92(5)
C(6)-Pt(1)-Cl(1)	160.51(5)
Cl(3)-Pt(1)-Cl(1)	90.815(19)
Cl(2)-Pt(1)-Cl(1)	89.096(19)
Bond lengths [Å] an	d angles [°] for 2

C(2)-N(3)	1.304(8)
C(2)-N(1)	1.360(8)
C(2A)-N(3A)	1.309(8)
C(2A)-N(1A)	1.358(8)
C(4)-C(5)	1.357(9)
C(4)-N(3)	1.373(9)
C(4A)-C(5A)	1.369(9)
C(4A)-N(3A)	1.373(8)
C(5)-N(1)	1.371(8)
C(5A)-N(1A)	1.369(9)
C(6)-C(7)	1.306(10)
C(6)-N(1)	1.415(8)
C(6A)-C(7A)	1.300(10)
C(6A)-N(1A)	1.414(8)
N(3)-Au(1)	2.017(5)
N(3A)-Au(1)	2.018(5)
Br(1)-Au(2)	2.3826(9)
Br(2)-Au(2)	2.3843(9)
Au(1)- $Au(2)$	3.1200(5)
N(3)-C(2)-N(1)	109.6(5)
N(3A)-C(2A)-N(1A)	110.5(6)
C(5)-C(4)-N(3)	109.3(6)
C(5A)-C(4A)-N(3A)	107.6(5)
C(4)-C(5)-N(1)	105.5(6)
N(1A)-C(5A)-C(4A)	107.4(6)
C(7)-C(6)-N(1)	125.1(7)
C(7A)-C(6A)-N(1A)	124.3(7)
C(2)-N(1)-C(5)	108.2(5)
C(2)-N(1)-C(6)	124.5(6)
C(5)-N(1)-C(6)	127.3(6)
C(2A)-N(1A)-C(5A)	106.7(5)
C(2A)-N(1A)-C(6A)	123.8(6)
C(5A)-N(1A)-C(6A)	129.4(6)
C(2)-N(3)-C(4)	107.4(5)
C(2)-N(3)-Au(1)	125.4(5)
C(4)-N(3)-Au(1)	127.1(4)

C(2A)-N(3A)-C(4A)	107.8(5)
C(2A)-N(3A)-Au(1)	126.3(5)
C(4A)-N(3A)-Au(1)	125.8(4)
N(3)-Au(1)-N(3A)	176.1(2)
N(3)-Au(1)-Au(2)	91.01(16)
N(3A)-Au(1)-Au(2)	90.82(16)
Br(1)-Au(2)-Br(2)	177.81(3)
Br(1)-Au(2)-Au(1)	93.20(2)
Br(2)-Au(2)-Au(1)	88.98(2)

Symmetry transformations used to generate equivalent atoms:

C(6)-N(1) 1.427(4) C(2)-N(3) 1.313(4) C(2)-N(1) 1.321(4) C(4)-C(5) 1.326(6) C(4)-N(3) 1.379(5) C(5)-N(1) 1.378(4) C(6A)-C(7A) 1.257(17) C(6A)-N(1A) 1.426(15) C(2A)-N(1A) 1.327(8) C(2A)-N(3A) 1.338(9) N(1A)-C(5A) 1.358(9) C(5A)-C(4A) 1.350(7) C(4A)-N(3A) 1.352(10) Cl(1)-Au(1) 2.2789(4) 2.2798(5) Cl(4)-Au(2) Cl(3)-Au(2) 2.2763(5) Cl(2)-Au(1) 2.2738(5) C(7) = C(6) = N(1)123 8(3)

Bond lengths [Å] and angles [°] for

1.302(5)

C(6)-C(7)

C(7)-C(0)-N(1)	123.8(3)
N(3)-C(2)-N(1)	108.4(3)
C(5)-C(4)-N(3)	106.3(5)
C(4)-C(5)-N(1)	107.9(5)
C(2)-N(1)-C(5)	108.1(4)
C(2)-N(1)-C(6)	124.0(3)
C(5)-N(1)-C(6)	127.8(4)
C(2)-N(3)-C(4)	109.3(5)
C(7A)-C(6A)-N(1A)	126.0(10)
N(1A)-C(2A)-N(3A)	108.4(14)
C(2A)-N(1A)-C(5A)	109.0(13)
C(2A)-N(1A)-C(6A)	123.9(10)

C(5A)-N(1A)-C(6A)	127.1(12)
C(4A)-C(5A)-N(1A)	106.2(17)
C(5A)-C(4A)-N(3A)	109(2)
C(2A)-N(3A)-C(4A)	107.3(18)
Cl(2)#1-Au(1)-Cl(1)	90.087(19)
Cl(2)-Au(1)-Cl(1)	89.913(19)
Cl(2)#1-Au(1)-Cl(1)#1	89.913(19)
Cl(2)-Au(1)-Cl(1)#1	90.087(19)
Cl(3)#2-Au(2)-Cl(4)	90.400(18)
Cl(3)-Au(2)-Cl(4)	89.600(18)
Cl(3)#2-Au(2)-Cl(4)#2	89.600(18)
Cl(3)-Au(2)-Cl(4)#2	90.400(18)

Symmetry transformations used to generate equivalent atoms:

#1 -x,-y,-z #2 -x,-y-1,-z

C(2)-N(3)	1.311(4)
C(2)-N(1)	1.336(3)
C(4)-C(5)	1.338(4)
C(4)-N(3)	1.372(4)
C(5)-N(1)	1.382(3)
C(6)-C(7)	1.291(4)
C(6)-N(1)	1.419(3)
Br(1)-Au(1)	2.4260(2)
Br(2)-Au(1)	2.4236(2)
Br(3)-Au(2)	2.4286(2)
Br(4)-Au(2)	2.4227(2)
N(3)-C(2)-N(1)	107.8(2)
C(5)-C(4)-N(3)	106.1(2)
C(4)-C(5)-N(1)	107.6(2)
C(7)-C(6)-N(1)	124.4(3)
C(2)-N(1)-C(5)	108.1(2)
C(2)-N(1)-C(6)	124.3(2)
C(5)-N(1)-C(6)	127.6(2)
C(2)-N(3)-C(4)	110.3(2)
Br(2)-Au(1)-Br(2)#1	180.000(12)
Br(2)-Au(1)-Br(1)#1	90.260(8)
Br(2)#1-Au(1)-Br(1)#1	89.739(8)
Br(2)-Au(1)-Br(1)	89.740(8)
Br(2)#1-Au(1)-Br(1)	90.260(8)
Br(1)#1-Au(1)-Br(1)	180.0
Br(4)-Au(2)-Br(4)#2	180.0
Br(4)-Au(2)-Br(3)#2	90.289(8)
Br(4)#2-Au(2)-Br(3)#2	89.711(8)
Br(4)-Au(2)-Br(3)	89.711(8)
Br(4)#2-Au(2)-Br(3)	90.288(8)
Br(3)#2-Au(2)-Br(3)	180.0

Bond lengths [Å] and angles [°] for 4

Symmetry transformations used to generate equivalent atoms: #1 -x+2,-y,-z #2 -x+1,-y,-z+1