Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Electronic Supplementary Material (ESI)

A Squaraine-based Dipicolylamine Derivative Acting as a Turn-on Mercury(II) Fluorescent Probe in Water

Catarina V. Esteves,^{a,†} Judite Costa,^b Hélène Bernard,^c Raphaël Tripier,^c Rita Delgado^a*

^a Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780– 157 Oeiras, Portugal.

^b Research Institute for Medicines (iMed.ULisboa, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.

^c Université de Brest, UMR-CNRS 6521, SFR SIBSAM, UFR des Sciences et Techniques, 6 avenue Victor le Gorgeu, C.S. 93837 29238 Brest Cedex 3, France.

*E-mail: delgado@itqb.unl.pt

	Content	Page
Table S1	Squaraine-based sensors for ${\rm Hg}^{2+}$ from the literature and the working medium used	S2
Table S2	Overall protonation constants of sbdpa and dpa in aqueous solution	S3
Table S3	Overall stability constants of the complexes of sbdpa and dpa with Hg^{2+} , Cu^{2+} and Zn^{2+} in	S3
	aqueous solution	
Fig. S1	Absorption and emission spectra of sbdpa in aqueous solution with pH variations	S4
Fig. S2	Absorption and emission spectra of the 1:1 M:L complex of sbdpa with Hg ²⁺ in aqueous solution	S4
Fig. S3	Fluorescence intensity change of ${\bf sbdpa}$ upon titration with ${\rm Hg}({\rm NO}_3)_2$ in aqueous buffered solution	S5
Fig. S4	Species distribution diagrams calculated for the complexes of ${\rm sbdpa}$ with ${\rm Cu}^{2+}$ and ${\rm Zn}^{2+}$ cations at 2:1 M:L ratio	S5
Fig. S5	Competition distribution diagram of the overall amounts of the sbdpa in function of pH	S6
Fig. S6	¹ H-NMR spectrum of sbdpa in CDCl ₃	S7
Fig. S7	¹³ C-NMR spectrum of sbdpa in CDCl ₃	S7
Fig. S8	COSY spectrum of sbdpa in CDCl ₃	S8
Fig. S9	HMQC spectrum of sbdpa in CDCl ₃	S8
Fig. S10	ESI mass spectrum of sbdpa in $H_2O/MeOH$	S9
Fig. S11	ATR-FTIR spectrum from sbdpa recorded at room temperature	S9
Fig. S12	Evolution of 1 H-NMR spectra of sbdpa in D ₂ O with time at pD 3.39 and pD 7.63	S10

Reference	Authors	Medium
9a	G. Wang et al.	EtOH/water solutions and pH 7.0 PBS buffer solution
9b	X. Liu <i>et al.</i>	DMSO, AcOH and SDS solutions
9c	S. Lee <i>et al.</i>	MeCN
9d	H. Zhu <i>et al.</i>	0.005% TW-80 (Tween-80 or polysorbate 80) at pH 5.0 PB buffer solutions
9e	HS. So <i>et al.</i>	MeCN
9f	SY. Lin <i>et al.</i>	EtOH/water solutions
9g	B. A. Rao <i>et al.</i>	MeCN
9h	Q. Lin <i>et al.</i>	EtOH/water (30:70, v/v) solutions
9i	L. Hu <i>et al</i> .	DMSO/water (1:1, v/v) solutions and pH 8.0 PB buffer with 0.01 mol L^{-1} CTMAB (cetyltrimethylammonium bromide)
9j	K. M. Shafeekh <i>et al.</i>	МеОН
9k	C. Luo <i>et al.</i>	MeCN and MeCN/water (2:1, v/v) solutions
91	C. Chen <i>et al.</i>	AcOH and AcOH/water (10:90, v/v) solutions
9m	C. Chen <i>et al.</i>	AcOH/water (40:60, v/v) solution
9n	Y. Xu <i>et al.</i>	Aqueous solution with cucurbit[8]uril (CB8)
9р	M. C. Basheer et al.	DCM
9q	J. V. Ros-Lis et al.	MeCN/water (1:4, v/v) pH 9.6 CHES buffer solutions
9r	J. V. Ros-Lis et al.	MeCN/water (20:80, v/v) pH 6.9 HEPES buffer solutions

Table S1. Squaraine-based sensors for Hg²⁺ from the literature and the working medium used

(a) G. Wang, W. Xu, H. Yang and N. Fu, Highly Sensitive and Selective Strategy for Imaging Hg²⁺ Using Near-Infrared 9 Squaraine Dye in Live Cells and Zebrafish, Dyes and Pigments, 2018, 157, 369-376; (b) X. Liu, N. Li, M. M. Xu, C. Jiang, J. Wang, G. Song and Y. Wang, Dual Sensing Performance of 1,2-Squaraine for the Colorimetric Detection of Fe³⁺ and Hg²⁺ ions, Materials, 2018, 11, 1998; (c) S. Lee, B. A. Rao and Y.-A. Son, A Highly Selective Fluorescent Chemosensor for Hg²⁺ Based on a Squaraine–bis(rhodamine-B) Derivative: Part II, Sensors and Actuators B: Chemical, 2015, 210, 519– 532; (d) H. Zhu, Y. Lin, G. Wang, Y. Chen, X. Lin and N. Fu, A Coordination Driven Deaggregation Approach toward Hg²⁺specific Chemosensors Based on Thioether Linked Squaraine-Aniline Dyads, Sensors and Actuators B: Chemical, 2014, **198**, 201–209; (e) H.-S. So, H.-S. So, B. A. Rao, J. Hwang, K. Yesudas and Y.-A. Son, Synthesis of Novel Squaraine– bis(rhodamine-6G): A Fluorescent Chemosensor for the Selective Detection of Hg²⁺, *Sensors and Actuators B: Chemical*, 2014, 202: 779–787; (f) S.-Y. Lin, H.-J. Zhu, W.-J. Xu, G.-M. Wang and N.-Y. Fu, A Squaraine Based Fluorescent Probe for Mercury Ion via Coordination Induced Deaggregation Signaling, Chinese Chem. Lett., 2014, 25, 1291-1295; (g) B. A. Rao, H. Kim and Y.-A. Son, Synthesis of Near-Infrared Absorbing Pyrylium-Squaraine Dye for Selective Detection of 2⁴, Sensors and Actuators B: Chemical, 2013, **188**, 847–856; (h) Q. Lin, Y. Huang, J. Fan, R. Wang and N. Fu, A Hgʻ Squaraine and Hg²⁺-based Colorimetric and "Turn on" Fluorescent Probe for Cysteine, Talanta, 2013, 114, 66–72; (i) L. Hu, Y. Zhang, L. Nie, C. Xie and Z. Yan, Colorimetric Detection of Trace Hg²⁺ with Near-Infrared Absorbing Squaraine Functionalized by Dibenzo-18-crown-6 and its Mechanism, Spectrochim. Acta A Mol. Biomol. Spectrosc., 2013, 104, 87-91; (j) K. M. Shafeekh, M. K. A. Rahim, M. C. Basheer, C. H. Suresh and S. Das, Highly Selective and Sensitive Colourimetric Detection of Hg²⁺ lons by Unsymmetrical Squaraine Dyes, Dyes and Pigments, 2013, 96, 714-721; (k) C. Luo, Q. Zhou, B. Zhang and X. Wang, A New Squaraine and Hg²⁺-based Chemosensor with Tunable Measuring Range for Thiol-Containing Amino Acids, New J. Chem., 2011, 35, 45-48; (I) C. Chen, H. Dong, Y. Chen, L. Guo, Z. Wang, J. J. Sun and N. Fu, Dual-mode Unsymmetrical Squaraine-based Sensor for Selective Detection of Hg²⁺ in Aqueous Media. Org. Biomol. Chem., 2011, 9, 8195-8201; (m) C. Chen, R. Wang, L. Guo, N. Fu, H. Dong, Y. Yuan, A Squaraine-based Colorimetric and "Turn on" Fluorescent Sensor for Selective Detection of Hg^{2+} in an Aqueous Medium, Org. Lett., 2011, 13, 1162–1165; (n) Y. Xu, M. J. Panzner, X. Li, W. J. Youngs and Y. Pang, Host-guest Assembly of Squaraine Dye in Cucurbit[8]uril: Its Implication in Fluorescent Probe for Mercury Ions, Chem. Commun., 2010, 46, 4073-4075; (o) E. M. Nolan and S. J. Lippard, Tools and Tactics for the Optical Detection of Mercuric Ion, Chem. Rev., 2008, 108, 3443–3480; (p) M. C. Basheer, S. Alex, K. G. Thomas, C. H. Suresh and S. Das, A Squaraine-based Chemosensor for Hg^{2+} and Pb²⁺ Tetrahedron, 2006, 62, 605-610; (q) J. V. Ros-Lis, M. D. Marcos, R. Martínez-Máñez, K. Rurack and J. Soto, A Regenerative Chemodosimeter Based on Metal-Induced Dye Formation for the Highly Selective and Sensitive Optical Determination of Hg^{2+} lons, *Angew. Chem. Inter. Ed.*, 2005, **44**, 4405–4407; (r) J. V. Ros-Lis, R. Martínez-Máñez, K. Rurack, F. Sancenón, J. Soto and M. Spieles, Highly Selective Chromogenic Signaling of Hg^{2+} in Aqueous Media at Nanomolar Levels Employing a Squaraine-Based Reporter, Inorg. Chem., 2004, 43, 5183-5185.

Equilibrium reaction	sbdpa	dpa ^b	
	$\log \beta_i^{H}$		
$L + H^{+} \rightleftharpoons HL^{+}$	10.85(2)	7.11	
$L + 2 H^+ \rightleftharpoons H_2 L^{2+}$	14.80(6)	9.59	
$L + 3 H^{+} \rightleftharpoons H_{3}L^{3+}$	18.12(4)	-	

Table S2. Overall (β_i^{H}) protonation constants of **sbdpa** and dpa in aqueous solution at 298.2±0.1 K and in 0.10±0.01 M KNO₃

^a This work; L denotes the ligand in general; values in parenthesis are standard deviations in the last significant figures. ^b T = 293.2 K, I = 0.1 M in KNO₃.²⁸

Table S3. Overall ($\beta_{M_mH_hL_l}$) stability constants of the complexes of **sbdpa** and dpa with Hg²⁺, Cu²⁺ and Zn²⁺ in aqueous solution at 298.2 K±0.1 in 0.10±0.01 M KNO₃

	$\log eta_{M_{m}H_{h}L_{l}}$					
Equilibrium reaction ^a	sbdpa			dpa ^b		
	Hg ²⁺	Cu ²⁺	Zn ²⁺	Hg ²⁺	Cu ²⁺	Zn ²⁺
$M^{2+} + H^{+} + L \rightleftharpoons [M^{II}HL]$	18.06(5)	16.01(3)				
$M^{2+}+L \rightleftharpoons [M^{II}L]$	14.60(4)	11.75(4)	8.4(1)		13.85	7.63
$M^{2+}+L \rightleftharpoons [M^{II}LOH] + H^{+}$		3.18(5)				
$M^{II} + L \rightleftarrows [M^{II}L(OH)_2] + 2H^+$		-7.28(6)				
M^{2+} + 2 L \rightleftharpoons [$M^{II}L_2$]				22.25	18.5	12.15
$2 \operatorname{M}^{2^+} + \operatorname{H}^+ + \operatorname{L} \rightleftarrows [\operatorname{M}_2^{ {}^{II}}\operatorname{HL}]$		19.76(7)	17.84(4)			
$2 M^{\parallel} + L \rightleftharpoons [M_2^{\parallel}L]$	18.97(9)	16.30(7)	13.14(7)			
$2 M^{II} + L \rightleftarrows [M_2^{II}LOH] + H^+$		9.43(9)	5.9(1)			
$2 M^{II} + L \rightleftarrows [M_2^{II} L(OH)_2] + 2H^+$		1.64(9)	-1.4(1)			
$2M^{\parallel} + L \rightleftharpoons [M_2^{\parallel}L(OH)_3] + 3H^+$		-7.2(1)	-9.5(1)			
$2M^{II} + L \rightleftarrows [M_2^{II}L(OH)_4] + 4H^+$		-17.0(1)	-19.6(1)			

^a This work; L denotes the ligand in general; values in parenthesis are standard deviations in the last significant figures. ^b T = 293.2 K, I = 0.1 M in KNO₃, G. Anderegg, E. Hubmann, N. G. Podder and F. Wenk, XI. Pyridinderivate als Komplexbildure. XI. Die Thermodynamik der Metallkomplexbildung mit Bis-, Tris- und Tetrakis [(2-pyridyl)methyl]-aminen, *Helv. Chim. Acta*, 1977, **60**, 123–140.

Fig. S1 Absorption and emission spectra of **sbdpa** in aqueous solution with pH variations at $C_L = 1.3 \times 10^{-3}$ M and T = 298.2 K. $\lambda_{exc} = 420$ nm.

Fig. S2 Absorption and emission spectra of the complex of **sbdpa** with Hg²⁺ 1:1 M:L in aqueous solution at pH 3.1; $C_L = 1.3 \times 10^{-3}$ M; T = 298.2 K. $\lambda_{exc} = 340$ nm.

Fig. S3 Fluorescence intensity change of **sbdpa** (2.5×10^{-5} M) upon titration with Hg(NO₃)₂ in aqueous buffered solution with MES (2.5×10^{-3} M) at pH 5.0 and *T* = 298.2 K. λ_{exc} = 340 nm.

Fig. S4 Species distribution diagrams calculated for the complexes of **sbdpa** with Cu^{2+} and Zn^{2+} cations at 2:1 M:L ratio. $C_M = 2C_L = 2.0 \times 10^{-3}$ M. L denotes the ligand.

Fig. S5 Competition distribution diagram of the overall amounts of the **sbdpa** in function of pH in presence of Hg^{2+} , Cu^{2+} , and Zn^{2+} in the 1:1:5:5 ratio. $C_{Hg^{2+}} = C_L = 2.5 \times 10^{-5}$ M, $C_{Cu^{2+}} = C_{Zn^{2+}} 1.25 \times 10^{-4}$ M. L denotes the **sbdpa** ligand.

Fig. S6 1 H-NMR spectrum of sbdpa in CDCl₃.

Fig. S7 ¹³C-NMR spectrum of sbdpa in CDCl₃.

Fig. S10 ESI mass spectrum of sbdpa in H₂O/MeOH.

Fig. S11 ATR-FTIR spectrum from **sbdpa** recorded at room temperature; no characteristic $v_{C=0}$ bands found at \cong 1700 cm⁻¹, nor typical water bands at 3408, 1644, and 700 cm⁻¹, supporting the fact that sbdpa is in its zwitterionic form, and that it is not an hydrate although it is recrystallized from water.

Fig. S12 Evolution of ¹H-NMR spectra of **sbdpa** in D_2O with time at pD 3.39 (top) and pD 7.63 (bottom).