Supporting Information

Selective Nitration of Phenol to *o*-Nitrophenol in the Presence of Metal Free Reduced Graphene Oxide at Room Temperature

Sourov Mondal, Jaydeep Singh, Shikha Singh, Sambhav Vishwakarma, Kheyanath Mitra,

Archana Kumari, Rajshree Singh, Susanta K. Sen Gupta, Biswajit Ray*

Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi – 221005, India

*Corresponding author's email: biswajitray2003@yahoo.co.in

Figure S1. ¹H NMR (CDCl₃, 500 MHz) of the reaction mixture of nitration of phenol using GO as catalyst

Figure S2. ¹H NMR (CDCl₃, 500 MHz) of the reaction mixture of the nitration of phenol in the absence of catalyst

Table S1. Comparative Table for the results of the Nitration phenol using different catalysts

Ent ry	Catalyst	Nitrating reagent	Solvent	Tem perat ure (°C)	Tim e (h)	Convers ion (%)	Selectivity of <i>o</i> -NP (%)	Selectivity of <i>p</i> -NP (%)	Selectivity of other products (%)	0/P ratio	Ref
1	ZSM-5 Zeolite	Nitric acid	chlorof orm	25	2	95.5	30.9	64.4	4.50	0.47	1
2	Tetrabutylam monium dichromate (TBAD)	Sodium nitrate	DCE	25	48	100	40	40		1.0	2
3	γ-alumina	Nitric acid	Carbon tetrachl oride	25	4.5	50	100	_		_	3
4	Silicotungstic acid supported zirconia (ZSTA)	Nitric acid	DCM	25	1	95	90	10		9.0	4

5	p-toluene sulfonic acid (PTSA)	Nickel nitrate hexahydrate [Ni(NO ₃) ₂ 6H ₂ O]	Aceton e	25	0.5	100	85% Yield	_			5
6	zeolite H-beta	Nitric acid	Carbon tetrachl oride	25	2	96	87	10	3	8.70	6
7	Iron loaded Sulfated Titania (STFE)	Nitric acid	Sol-gel rout	0	2	80.8	80.5	4.6	3.3	1 7.5	7
8	Cromium loaded Sulfated Titania (STCR)	Nitric acid	Sol-gel rout	0	2	90	97.5	_	1.4		8
9	MoO ₃ /TiO ₂ - SiO ₂ mixed oxide	Nitric acid	Carbon tetrachl oride	25	4	95	51	48	1	1.07	9
10	WO ₃ loaded on nano- crystalline sulfated SnO ₂	Nitric acid	acetone	60		97.8	94.2	3.6	2.2	26.1 7	10
11	TBAB – ultrasononically assisted	Nitric acid	DCM	25	6	95	83	16		5.25	11
12	silica supported H ₄ PW ₁₁ VO ₄₀	Nitric acid	DCE	25	3	92	97	3	_	32.3	12
13	Reduced Graphene Oxide	Nitric acid	DCE	25	3	98.3	100			_	This wor k

References

1. M. Arshadi, M. Ghiaci and A. Gil, Ind. Eng. Chem. Res. 2010, 49, 5504–5510

- 2. A.Pourali and A. Goli, J. Chem. Sci. 2011, 123, 63-67.
- 3. L. Das, K. G. Biswas, and J. K. Basu, Progress Petrochem Sci. 2018, 1, 1-13
- 4. S. Mallick and K.M. Parida, Catalysis Communications. 2007, 8, 1487–1492
- 5. V. Anuradha, P. V. Srinivas, P. Aparna and J. M. Rao, Tetrahedron Letters .2006, 47, 4933–4935
- 6. S.P. Dagade, V. S. Kadam and M.K. Dongare, Catalysis Communications .2002, 3, 367–370
- 7. K.R. Sunajadevi and S. Sugunan, Materials Letters. 2006, 60, 3813-3817
- 8. K.R. Sunajadevi and S. Sugunan, Catalysis Communications. 2005, 6, 611–616
- 9. S.M. Kemdeo, V.S. Sapkalb and G.N. Chaudharia, Journal of Molecular Catalysis A: Chemical. 2010,323, 70–77
- 10. A.S. Khder and A.I. Ahmed, Applied Catalysis A: General. 2009, 354, 153-160
- 11. N. S. Nandurkar, M. J. Bhanushali, S.R. Jagtap, B. M. Bhanage, Ultrasonics Sonochemistry. 2007 14, 41–45
- A.S.H.Kumar, K.T.V.Rao, K.Upendar, C.Sailu, N.Lingaiah and P.S.S.Prasad, Catalysis Communications. 2012, 18, 37–40
- P.V. Ghorpade, D. A. Pethsangave, S. Some and G. S.Shankarling, J. Org. Chem. 2018, 83, 7388-7397