Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Hydrogenation of CO₂ to LPG over CuZnZr/MeSAPO-34 Catalyst

Mingliang Tong^{a+}, Emmerson Hondo^{a+}, Linet Gapu Chizema^a, Ce Du^{a,c}, Qingxiang Ma^b, Shuting Mo^a, Chengxue Lu^a, Peng Lu^{a,b*}, Noritatsu Tsubaki ^{d*}

a Zhejiang Provincial Key Lab for Chem. & Bio. Processing Technology of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, 310023, PR China b State Key Laboratory Cultivation Base of Natural Gas Conversion, Ningxia University, Yinchuan 750021, PR China c Department of Applied Chemistry, School of Engineering, University of Toyama, Gofuku 3190, Toyama 930-8555, Japan ⁺These authors have equal contribution

*Corresponding authors

Email: lvpeng0830@zust.edu.cn (Peng Lu)

Email: tsubaki@eng.u-toyama.ac.jp (Noritatsu Tsubaki)

Supporting information

Catalysts	Weak acid		Strong acid	Strong acid		
	Temperature (°C)	Acid amount (mmol·g ⁻¹)	Temperature (°C)	Acid amount (mmol·g ⁻¹)	$(\text{mmol} \cdot \text{g}^{-1})$	
1%ZrSAPO-34	175	0.44	392	0.31	0.75	
3%ZrSAPO-34	188	0.34	362	0.24	0.58	
5%ZrSAPO-34	176	0.36	368	0.18	0.54	
7%ZrSAPO-34	172	0.33	360	0.11	0.44	
10%ZrSAPO-34	172	0.25	359	0.09	0.34	

 Table S1. NH₃-TPD results of x%ZrSAPO-34 catalysts

Fig. S1. NH₃-TPD profiles of *x*ZrSAPO-34 zeolite

Fig. S2. H₂-TPR profiles of CZZ/xZrSAPO-34 zeolite

Fig. S3. N₂ adsorption-desorption isotherms of SAPO-34 and xZrSAPO-34 zeolite catalysts

Submitted to New Journal of Chemistry

Fig. S4. SEM images of (a) 1%ZrSAPO-34; (b) 3%ZrSAPO-34; (c) 7%ZrSAPO-34; (d) 10%ZrSAPO-34

Catalysts	BET (m ² g ⁻¹)	Total pore volume (cm ⁻³ g ⁻¹)
1%ZrSAPO-34	305	0.195
3%ZrSAPO-34	263	0.165
7%ZrSAPO-34	190	0.109
10%ZrSAPO-34	136	0.072

Table S2. Textural properties of the catalysts

Fig. S5. Particle size distribution histogram of 5%ZrSAPO-34 catalyst

Fig. S6. Catalytic activity of CZZ/5%ZrSAPO-34 catalyst; Reaction conditions: pressure = 2.0 MPa, reaction temperature =350 °C, GHSV=4200 h⁻¹, C_3^0 - C_4^0 paraffins, ratio of CZZ to zeolite = 1, *all hydrocarbon selectivities were calculated CO free

Catalyst	CO ₂ conversion (%)	Selectivity (%)		Hydrocarbons distribution (%)				
Zr (wt%)		СО	НС	CH ₄	DME/ (CH ₃ OH)	C_2	C ₃ -C ₄	C ₅₊
0	24.0	58.6	41.4	22.8	1.5	0.6	75.1	0.6
1	23.9	68.2	41.4	18.8	0.0	0.9	78.7	0.3
3	24.2	71.4	28.6	18.1	0.0	0.0	80.9	0.0
5	25.7	68.4	31.6	9.7	0.0	4.2	86.1	0.0
7	24.4	73.5	26.5	21.5	0.0	3.3	75.2	0.0
10	24.2	76.3	23.7	23.3	0.0	5.1	71.6	0.0

 Table S3. Effect of Zr concentration on catalytic performance

Reaction conditions: Pressure = 2.0 MPa, reaction temperature = 350 °C, GHSV=4200 h⁻¹,

 C_2^0 - C_4^0 paraffins, TOS=360 mins, *all hydrocarbon selectivities were calculated CO free.

Catalyst	CO ₂ conversion (%)	Selectivity (%)		Hydrocarbons distribution (%)				
		СО	HC	CH ₄	DME/ (CH ₃ OH)	C_2	C ₃ -C ₄	C ₅₊
CZZ/SAPO-34-0.5	24.8	61.1	38.9	26.2	3.7	1.1	68.2	0.8
CZZ/SAPO-34-1	24.0	58.6	41.4	22.8	1.5	0.6	75.1	0.6
CZZ/SAPO-34-2	24.4	73.1	26.9	30.5	2.5	1.2	65.1	0.7
CZZ/5%ZnSAPO-34-0.5	24.6	64.4	35.6	13.8	2.2	0.0	84.0	0.0
CZZ/5%ZrSAPO-34-1	25.7	68.4	31.6	9.7	0.0	4.2	86.1	0.0
CZZ/5%ZrSAPO-34-2	24.1	75.5	24.5	12.0	3.3	0.0	83.5	1.2

Table S4. Effect of metal oxide to zeolite ratio

Reaction conditions: Pressure = 2.0 MPa, reaction temperature = 350 °C, GHSV= 4200 h^{-1} ,

 C_2^0 - C_4^0 paraffins, TOS=360 mins, *all hydrocarbon selectivities were calculated CO free.