Supporting Information:

β -NaYF₄:Yb,Er,Gd Nanorods@1T/2H-MoS₂ for 980 nm NIR-Triggered Photocatalytic Bactericidal Properties

Yan Qiao,^a Xionglin Zhou,^a Hongchao Geng,^a Leilei Sun,^a Deshuai Zhen,^{*a} Qingyun Cai^{*a}

^aState Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China

*^aTo whom correspondence should be addressed. E-mail: <u>deshuaizhen@hnu.edu.cn</u>; <u>qycai0001@hnu.edu.cn</u>.

÷

Figure S1: FT-IR spectra of OA- β -NaYF₄:Yb,Er,Gd, citrate- β -NaYF₄:Yb,Er,Gd and sodium citrate. The broad band at 3440 cm⁻¹ for both the Cit- β -NaYF₄:Yb,Er,Gd and sodium citrate can be attributed to the O-H stretching vibration. For OA- β -NaYF₄:Yb,Er,Gd, the peaks at 2927 and 2856 cm⁻¹ are assigned to the asymmetric and symmetric stretch vibrations of methylene (-CH₂-) in the long alkyl chain of OA. The band at 1557 and 1462 cm⁻¹ are attributed to stretch vibrations of COO bond. The results indicate that OA was coated on the surface of the β -NaYF₄:Yb,Er,Gd nanorods. After the ligand replacement, the strong absorption band at 1643 cm⁻¹ can be assigned to the asymmetric stretching vibrations carboxylic groups of the surface coated citric acid molecules, the results are consistent with the FTIR spectrum of sodium citrate.

Figure S2: Zeta potential of MoS_2 , β -NaYF₄:Yb,Er,Gd, PEI-MoS₂, β -NaYF₄:Yb,Er,Gd @MoS₂

Figure S3: X-ray powder diffraction (XRD) patterns of NaYF₄:Yb,Er,Gd (green), NaYF₄:Yb,Er (blue), and pure Si (111) as internal standard (red).

Figure S4: Raman spectra of MoS₂ indicate the presence of 1T and 2H phase.

	- F Y	Element	Weight %	Atomic %
cps/eV	. T T	Na	6.65	13.18
	8-	F	23.44	56.23
	-	Y	31.77	16.29
		Yb	14.69	3.87
		Er	0.69	0.19
	Na	Gd	16.88	4.89
		Mo	3.18	1.51
	Yb	S	2.70	3.84
	4-	Total	100.00	100.00
		Yb Yb Yb Fr Fr 8 10	V 12 14	<u> </u>

Figure S5: EDS spectrum of the β -NaYF₄:Yb,Er,Gd@1T/2H-MoS₂.

Figure S6: Concentration dependent viability of the *E. coli* K12 cells incubated with MoS_2+NIR , $\beta-NaYF_4:Yb,Er,Gd+NIR$, $\beta-NaYF_4:Yb,Er,Gd$ @1T/2H-MoS₂, and $\beta-NaYF_4:Yb,Er,Gd$ @1T/2H-MoS₂+NIR.

Figure S7: Photographs of colony-forming units of *E. coli* treated with β -NaYF₄:Yb,Er,Gd Nanorods@1T/2H-MoS₂(40 µg/mL) agent under the 980 nm NIR irradiation for 0, 10, 15, 20, and 25 min, respectively.

Figure S8: Cytotoxicity of $1T/2H-MoS_2$ (A), β -NaYF₄:Yb,Er,Gd (B), β -NaYF₄:Yb,Er,Gd@1T/2H-MoS₂ (C) in HEK 293 cells.