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Figure S1 The Specific heat capacity (Cp) of GP and AGPs with various APBI loadings at room 

temperature.

Figure S2 (a) TGA curves and (b) weight loss of GP, APBI, AGP-1, AGP-2, AGP-3, AGP-4 and AGP-

5 at 800 °C.

It can be seen from the Figure S2 that GP, APBI, AGP-1, AGP-2, AGP-3, AGP-4 and AGP-5 had 

a 6.72 %, 50.24 %, 11.24 %, 12.93 %, 16.09 %, 21.86 % and 25.22 % weight loss at 800 °C, 

respectively. Thus, it was figured out according to the following equation that AGP-1 contained about 

89.64wt% GNS and 10.36wt% APBI.                              

       (1)6.72𝑥+ 50.24𝑦= 11.24

                   (2)𝑥+ 𝑦= 1

x and y are weight loss percentage of GNs and APBI, respectively. Similarly, the AGP-2, AGP-

3, AGP-4 and AGP-5 contain 14.22 wt%, 21.45 wt%, 34.65 wt% and 42.36 wt% APBI, respectively.
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Figure S3 The aqueous dispersion (2.5ⅹ10-4 g/mL) of APBI, GNs, AG-1, AG-2, AG-3, AG-4 and 

AG-5 after standing for 12 h. 

Figure S4 SEM, AFM and TEM images of GNs (a, b, c) and AG (d, e, f).

Figure S4 shows the SEM, AFM and TEM images of GNs and APBI functionalized graphene 

nanosheets (AG). The average size of the GNs was approximately 7µm as shown in Figure S4(a). 

Figure S4(d) displays that most of the nanosheets are seriously wrinkled and aggregated together, 

indicating that APBI acts as an adhesive to connect GNs. And the thickness of GNs was measured to 

be 1.8 nm (Figure S4(b)), which indicated that the graphene has five or six layers stacked together. 

After APBI was attached into the GNs via π-π stacking interaction, the thickness of AG was increased 

to 2.89 nm (Figure S4(e)), indicating the strong π-π stacking interactions exist between APBI and 

GNs.1 In addition, the morphology of GNs and AG were demonstrated by the TEM. As shown in 

Figure S4(c), it can be seen that the GNs was several layers consistent with the AFM characterization 

and the edge of the GNs were rolled up. And the surface of AG is darker than GNs and some APBI 

were attached on to the GNs as shown in Figure S4 (f), suggesting that the successful π-π stacking 

interaction between APBI and GNs.
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Figure S5 (a) XRD curves of GP, AGP-1, AGP-2, AGP-3, AGP-4 and AGP-5. (b) The 002 peak of 
GP, AGP-1, AGP-2, AGP-3, AGP-4 and AGP-5 in range of 25.5~27.5 degree.

 
Figure S6 Digital photographs of GP, AGP-1, AGP-2, AGP-3, AGP-4 and AGP-5 (unpressured). 

Figure S7 SEM images of the surface of (a) GP, (b) AGP-1, (c) AGP-2, (d) AGP-3, (e) AGP-4 and (f) 

AGP-5.
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Figure S8 Thermal conductivity enhancement of AGPs for the through-plane directions.

Table S1. The thermal conductivities and mechanical properties of Graphene-based papers.
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Reference and 
year

materials Tc‖
a

(W m-1 K-1)
Tc⊥b

(W m-1 K-1)
Tensile strength 

(MPa)
Toughness 
(MJ m-3)

20082 RGO-PB － － 8.4 －

20113 xGnP 178 1.28 － －

20134 AgNWs/graphene 
paper

－ － － －

20135 rGO-PCDO － － 129.6 3.91
20136 rGO-SL － － 300.0 2.80
20147 rGO-PAPB － － 382.0 7.50
20148 rGO-PDA － － 204.9 4.00
20149 G-GF 977 － 15.3 －

201410 TPA-rGO － － ~125 ~1.0
201511 rGO-FPEG － － 45.0 －

201512 rGO-CS － － 526.7 17.69
201513 rGO-DWNT-PCDO － － 374.1 9.20
201514 rGO-MoS2-TPU － － 235.0 6.90
201515 rGO-MMT-PVA － － 356.0 7.50
201516 PVA-SRGO － － 252 －

201517 Ca-GP 331.8 － － －

201518 CNR/graphene 
paper

890 5.81 － －

201619 rGO-NFC-PCDO － － 314.6 9.8
201620 rGO-DWNTs-PVA － － 384.2 19.3
201721 CNT/G 1388.7 0.16 － －

201722 rGO-CNT 804.24 0.06 －  －
201723 rGO-AP-DSS － － 538.8 16.1
201724 rGO/Al-CMC-GO － － 586.6 12.1
201725 rGO-PVA － － 150.9 8.5
201726 rGO-CNC － － 765 15.64
201827 SBG － 821 20
201828 SBG 945 20.6
201829 GFs 3200 － 78 －

201830     rGO-CNR film 1820.4 4.60 31.6 －

201931 rGO-WSCA － － 499.3 9.6
This work AGP-2 289.37 2.73 47.9 0.34

AGP-5 231.68 6.67 19.8 0.16
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