Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

> Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

NEW J CHEM

Electronic Supplementary Information

Experimental and theoretical investigation on MoS₂/MXene

heterostructure as an efficient electrocatalyst for PH-universal

hydrogen evolution reaction

Le Hu^a, Yuyun Sun^a, Shi-Jing Gong^a, Hui Zong^a, Ke Yu^{*a,b} and Ziqiang Zhu^a

^a Key Laboratory of Polar Materials and Devices (MOE), Department of Electronics, East China Normal University, Shanghai 200241, China

^b Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China

* Corresponding Author:

Tel: +86-21-54345198.

E-mail address: yk5188@263.net.

Fig. S1 (a) Mo 3d XPS spectra of 0.25 $MoS_2-Nb_2CT_x$ heterostructure and MoS_2 . (b) Nb 3d XPS spectra of 0.25 $MoS_2-Nb_2CT_x$ heterostructure and Nb_2CT_x .

Fig. S2 SEM images of MoS₂.

Fig. S3 SEM images of 0.15 $MoS_2-Nb_2CT_x$ and 0.35 $MoS_2-Nb_2CT_x$ heterostructures: (a) SEM image of 0.15 $MoS_2-Nb_2CT_x$ heterostructure. (b) SEM image of 0.35 $MoS_2-Nb_2CT_x$ heterostructure.

Fig. S4 Mass ratio diagram of elements and chemical composition in 0.25 MoS_2 -Nb₂CT_x sample. Because the proportion of Al element is only 0.12%, it is not exhibited in the figure.

Fig. S5 CV Cyclic voltammetry curves of MoS₂, Nb₂CT_x, 0.15 MoS₂-Nb₂CT_x, and 0.35 MoS₂-Nb₂CT_x: (a) CV Cyclic voltammetry curve of MoS₂, (b) CV Cyclic voltammetry curve of Nb₂CT_x, (c) CV Cyclic voltammetry curve of 0.15 MoS₂-Nb₂CT_x, (d) CV Cyclic voltammetry curve of 0.35 MoS₂-Nb₂CT_x.

Fig. S6 SEM images of $0.25 \text{ MoS}_2\text{-Nb}_2\text{CT}_x$ before and after the cycles.

(a) SEM image of $0.25 \text{ MoS}_2\text{-Nb}_2\text{CT}_x$ before the cycles. (b) SEM image of the composite after the potential sweeps for 3000 cycles in acidic medium. (c) SEM image of the composite after the potential sweeps for 3000 cycles in alkaline medium.

Table S1. Comparison of HER performances for $MoS_2-Nb_2CT_x$ with related MoS_2 -based catalysts.

Catalyst	Overpotential	Tafel	R _{ct}	Electrolyte	Reference
	(mV)	slope (mV dec ⁻¹)			
MoS ₂ -Nb ₂ CT _x	127	56.2	63.1	0.5 M H ₂ SO ₄	This work
MoS ₂ -Ti ₃ C ₂ T _x	152	70	-	0.5 M H ₂ SO ₄	1
MoS ₂ -GF	157	93	47.3	0.5 M H ₂ SO ₄	2
Ni@NC/MoS2- P	325	118.2	28.6	0.5 M H ₂ SO ₄	3
Cu-MoS ₂ /rGo	244	127	-	0.5 M H ₂ SO ₄	4
CoP/CN @ MoS ₂	144	69	-	0.5 M H ₂ SO ₄	5
MoS ₂ -Nb ₂ CT _x	141	93.4	231.4	1 M KOH	This work
(NiFe) _x -MoS ₂	285	94	-	1 M KOH	6
MoS ₂ -Co(OH) ₂	179	62	-	1 M KOH	7
MoS ₂ @ 3DC	252	102.8	316.3	1 M KOH	8
Fe-MoS ₂	163	181	-	1 M KOH	9
Co-MoS ₂	215	153	175	1 M KOH	10
Ni-P/MoS ₂	155	108	2758	1 M KOH	11

REFERENCES

- 1 J. Liu, Y. Liu, D. Xu, Y. Zhu, W. Peng, Y. Li, F. Zhang and X. Fan, *Appl. Catal. B*, 2019, **241**, 89-94.
- B. Liu, S. Wang, Q. Mo, L. Peng, S. Cao, J. Wang, C. Wu, C. Li, J. Guo, B. Liu, W. Chen and Y. Lin, *Electrochim. Acta*, 2018, 292, 407-418.
- 3 S. A. Shah, X. Shen, M. Xie, G. Zhu, Z. Ji, H. Zhou, K. Xu, X. Yue, A. Yuan, J. Zhu and Y. Chen, *Small*, 2019, **15**, 1804545.
- 4 F. Li, L. Zhang, J. Li, X. Lin, X. Li, Y. Fang, J. Huang, W. Li, M. Tian, J. Jin and R. Li, *J. Power Sources*, 2015, **292**, 15-22.
- 5 J. G. Li, K. Xie, H. Sun, Z. Li, X. Ao, Z. Chen, K. K. Ostrikov, C. W. Wang and W. Zhang, *Appl. Mater. interfaces*, 2019, **11**, 36649-36657.
- 6 C. Liu, Y. Guo, Z. Yu, H. Wang, H. Yao, J. Li, K. Shi and S. Ma, *Nanotechnology*, 2020, **31**, 035403.
- 7 Y. Luo, X. Li, X. Cai, X. Zou, F. Kang, H. M. Cheng and B. Liu, ACS Nano, 2018, 12, 4565-4573.
- 8 L. Diao, B. Zhang, Q. Sun, N. Wang, N. Zhao, C. Shi, E. Liu and C. He, *Nanoscale*, 2019, **11**, 21479-21486.
- 9 J. Zhang, T. Wang, P. Liu, S. Liu, R. Dong, X. Zhuang, M. Chen and X. Feng, *Energy Environ. Sci.*, 2016, 9, 2789-2793.
- 10 J. Liang, C. Ding, J. Liu, T. Chen, W. Peng, Y. Li, F. Zhang and X. Fan, *Nanoscale*, 2019, **11**, 10992-11000.
- 11 J. He, L. Song, J. Yan, N. Kang, Y. Zhang and W. Wang, *Metals*, 2017, 7, 211.