Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Supporting Information

Controllable synthesis of an intercalated SnS₂/aEG structure

for enhanced NO₂ gas sensing performance at room

temperature

Laifeng Ma^a, Xueyi Zhang^b, Jue Wang^a, Muhammad Ikram^a, Mohib Ullah^a, He Lv^a, Hongyuan Wu^{*c}, Keying Shi^{*a}

^aKey Laboratory of Functional Inorganic Material Chemistry, Ministry of Education. School of Chemistry and Material Science, Heilongjiang University, Harbin, 150080, P. R. China.

^bCollege of Food Science, Northeast Agricultural University, Harbin 150030, P. R. China.

^cCollege of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, P. R. China.

*Corresponding author: Tel.: +86 13100998185; +86 451 86604920

E-mail: whyhht1972@163.com, shikeying2008@163.com

Abstract: Supporting information provide: (i) XRD diffraction patterns of aEG, (ii) FT-IR spectra of SnS₂/aEG-IV and PVP, (iii) Raman spectra of aEG and SnS₂/aEG-IV, (iv) TEM image of flower like SnS₂, (v) EDS elemental mapping of the SnS₂/aEG-III, (vi) SEM images of SnS₂/aEG-IV, (vii) HRTEM images of SnS₂/aEG-III, (viii) Fitted impedance parameters all of the samples, (ix) The gas sensing properties of $SnS_2/aEG-III$ compared with the references based on SnS_2 , (x) XPS spectra of the pristine SnS₂, aEG, SnS₂/aEG-III and of the used SnS₂/aEG-III NC, (xi) Dynamical response transient of the pristine aEG, SnS₂, SnS₂/aEG-I, SnS₂/aEG-II and SnS₂/aEG-IV NCs, (xii) Table of the comparative response and response/recovery time of all the samples, (xiii) The calibration curve and the reproducibility of SnS₂/aEG-III, (xiv) FT-IR informations of vibration of PVP, (xv) Humidity test on $SnS_2/aEG-III$, (xv) A diagram of the delivery humidity system for the gas sensing and test.

Table of contents

S-1 Cover page

S-2 Table of contents

S-3 **Table S1** The comparison of SnS_2 based NO_2 sensor developed in this paper with previous sensors.

S-4 Fig. S1 and Fig. S2 XRD diffraction pattern and Raman spectrum of aEG; FT-IR spectrum and Raman spectrum of SnS₂/aEG-IV.

S-5 **Fig. S3 and Table S2** FT-IR spectra, wavenumber, assignment, and mode of vibration of PVP.

S-6 Fig. S4, Fig. S5 and Fig. S6 TEM image of flower like SnS₂; EDS image of SnS₂/aEG-

III, EDS elemental mapping of the SnS₂/aEG-III; SEM images of SnS₂/aEG-IV.

S-7 Fig. S7 Enlarged TEM image of 4h and 4i in the text.

S-8 **Table S3 and Table S4** The comparative XPS peak positions of the pure SnS_2 , aEG, fresh SnS_2/aEG -III and of the used SnS_2/aEG -III nanocomposites; Fitted impedance parameters of the sample.

S-9 **Fig. S8** Dynamic response-recovery curve of (a) $SnS_2/aEG-I$, (b) $SnS_2/aEG-II$, (c) $SnS_2/aEG-IV$ and (d) SnS_2 to NO_2 gas at room temperature.

S-10 **Table S5 and Fig. S9** Response, response time and recovery time of the sensors to NO₂ at room temperature in 30 % humidity; The calibration curve of $SnS_2/aEG-III$ to 0.01-100 ppm NO₂; The reproducibility of the $SnS_2/aEG-III$ sensor.

S-11 Fig. S10 and Fig. S11 Dynamic response-recovery curve of aEG; Response-recovery curves of the SnS_2/aEG -III to 100 ppm NO_2 gas in different relative humidity at RT.

S-12 Fig. S12 A diagram of the delivery system for the gas sensing and humidity test.

Sample	Working temperature/°C	NO₂ concentration /ppm	Sensitivity	Refs.	
SnS_2	120	10	~36	_	[22]
SnO ₂ /SnS ₂	100	1	51.1	299s/143s	[23]
SnS ₂	120	0.1	5.7	—	[24]
SnS ₂	250	10	~15	6s/40s	[25]
SnO_2/SnS_2	80	8	5.3	159s/297s	[26]
SnS ₂ -reduced graphene oxide	80	0.6	~1	>5min	[27]
SnS ₂ Nanograins on Porous SiO ₂ Nanorods	RT	10	~7	_	[28]
SnS ₂ /aEG-III	RT	100	21.19	0.53s/ 51.73s	Our work

Table S1 Comparison of NO2 Sensing Performance of the SnS_2 -based Sensordeveloped in this work with the previous ones.

Fig. S1 XRD diffraction pattern (a) and Raman spectrum (b) of aEG.

Fig. S2 (a) FT-IR spectrum and (b) Raman spectrum of SnS₂/aEG-IV.

Fig. S3 Spectra of FT-IR of PVP.

Table S2 FT-IR Wavenumber, assignment, and mode of vibration of PVP.

Wavenumber / cm ⁻¹	Assignment	Vibration mode		
~3466	H_2O combined	Stretching O-H		
~2930	CH ₂	Bending C-H		
~1665	C=O	Stretching C-O		
~1494	CH ₂	Bending CH ₂		
~1429	CH ₂	Bending CH ₂		
~1292	C-N	Stretching C-N		

Fig. S4 TEM image of the flower like SnS₂.

Fig. S5 (a) EDS image of $SnS_2/aEG-III$; EDS elemental mapping of the $SnS_2/aEG-III$ (b) for C (c) S (d) and Sn (e) elements.

Fig. S6 SEM images of SnS₂/aEG-IV.

Fig. S7 Enlarged view of 4h and 4i in text.

Binding energy (eV)								
Sn (3d _{5/2} /3d _{3/2}) S (2p _{3/2} /2p _{1/2}) C 2s								
SnS ₂	487.16/495.60	163.39/162.21	_					
aEG	_	_	284.65					
SnS ₂ /aEG-III (fresh)	487.23/495.65	163.45/162.35	284.60					
SnS ₂ /aEG-III (used)	487.30/495.69	163.40/162.25	284.66					

Table S3 The comparative XPS peak positions of the pure SnS_2 , aEG, fresh SnS_2/aEG -III and of the used SnS_2/aEG -III NCs

Table S4 Fitted impedance parameters of the samples

Samples	SnS ₂	aEG	SnS₂/aEG-III
R_{Ω} (Ω)	34	26	18
R_{ct} (Ω)	1483	380	153

Fig. S8 Dynamical response transient of (a) $SnS_2/aEG-I$, (b) $SnS_2/aEG-II$, (c) $SnS_2/aEG-IV$ and (d) SnS_2 to NO_2 gas at room temperature.

	SnS₂/aEG-III		SnS ₂ /aEG-II		SnS ₂ /aEG-I			SnS ₂				
NO ₂	R_a/R_g	t_{res}	t_{rec}	R_a/R_g	t_{res}	t_{rec}	R_a/R_g	t_{res}	t_{rec}	R_a/R_g	t_{res}	t_{rec}
(ppm)												
100	21.19	0.53	51.73	10.65	1.07	93.33	6.14	1.07	72.53	3.04	1.07	81.60
50	13.39	0.53	58.13	5.17	1.07	93.87	5.79	1.07	74.67	2.70	1.07	78.93
30	9.98	1.07	56.53	3.22	1.60	86.40	5.51	1.07	76.27	2.66	1.60	98.67
10	7.93	1.07	50.67	2.73	3.20	94.93	5.17	1.07	77.33	2.64	1.60	89.07
5	5.94	1.07	44.80	2.42	3.73	85.33	2.93	2.13	60.27	2.20	3.20	72.00
3	5.35	1.60	48.00	2.13	5.33	89.60	2.47	2.13	56.53	2.15	3.73	59.20
1	4.00	2.13	51.20	1.64	5.87	95.47	1.48	2.67	59.20	1.68	3.73	62.40
0.5	2.50	3.20	44.27	1.48	8.00	94.40	1.28	4.27	41.60	1.53	3.73	67.20
0.3	2.40	3.20	42.67	1.39	9.60	82.67	1.21	4.27	37.87	1.47	4.27	73.60
0.1	1.50	3.20	38.40	1.28	10.13	78.93	1.13	5.33	38.93	1.14	4.27	56.00
0.05	1.22	3.73	34.67	1.27	10.13	61.87	1.09	5.87	35.20	1.09	5.87	58.13
0.03	1.09	4.80	30.93	1.23	11.73	62.93				1.07	6.40	51.20
0.01	1.04	8.53	18.13									

Table S5 Response, response time and recovery time of the sensors to NO_2 at room temperature in 30 % humidity.

t_{res} = Response Time (s), *t_{rec}* = Recovery Time (s)

Fig. S9 (a) The calibration curve of $SnS_2/aEG-III$ to 0.01-100 ppm NO_2 , (b) The reproducibility of the $SnS_2/aEG-III$ sensor upon successive exposure (9 cycles) to 100 ppm NO_2 .

Fig. S10 Dynamical response transient of aEG to NO₂ gas at room temperature.

Fig. S11 (a) Response-recovery curves of the SnS_2/aEG -III to 100 ppm NO_2 gas in different relative humidity at RT (27 °C); (b) the gas sensor response corresponding to Figure (a).

Detail description: The first step is to install the modified gold interdigitated electrode in the gas chamber and connect it with the external environment. Then, the chamber was washed with fresh air to remove all impurities. Next, the humidifier system was used to achieve the required humidity (relative humidity (20% - 75%)). The humidity of the system is monitored by a hygrometer. Finally, NO₂ gas (100 ppm) was sent to the chamber. When the resistance is balanced, the oil pump was used to purge the fresh air until the sensor resistance reaches the initial state.

Fig. S12 A diagram of the delivery system for the gas sensing and humidity test.