Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Electronic Supplementary Information

Nano Spinel Cobaltites and Their Catalytic and Electrochemical Properties: Facile Synthesis of Metal (Co, Ni, and Zn) and Mixed Metal (Co-Ni and Co-Zn) Complexes of Schiff Bases Prepared from α-Ketoglutaric Acid and Ethyl Carbazate

Sheikdawood Parveen,^a Hung Huy Nguyen,^b Thathan Premkumar,^{*c} Horst Puschmann^d and Subbiah Govindarajan^{*a}

Table S1. Analytical data

Compound	Color	M.wt.	Mol. Formula	% Found (Calcd.)					
	(% yield)	(g/mol)		C	Η	Ν	М		
H ₂ L.H ₂ O	White	250.21	$C_8H_{14}N_2O_7$	38.80	5.20	11.40	-		
	(94)			(38.40)	(5.63)	(11.19)			
[Co(HL) ₂]	Pink	521.30	$C_{16}H_{22}CoN_4O_{12}$	37.21	4.50	10.98	11.78 (11.30)		
	(85)			(36.86)	(4.25)	(10.74)			
[Ni(HL) ₂]	Green	521.05	$C_{16}H_{22}NiN_4O_{12}$	37.12	4.71	11.11	11.89 (11.26)		
	(89)			(36.88)	(4.25)	(10.75)			
[Zn(HL) ₂]	White	527.74	$C_{16}H_{22}ZnN_4O_{12}$	36.85	4.75	10.87	12.74 (12.38)		
	(88)			(36.41)	(4.20)	(10.61)			
[Ni _{1/3} Co _{2/3} (HL) ₂]	Grey	521.23	$C_{16}H_{22}Ni_{1/3}Co_{2/3}N_4O_{12}$	37.21	4.66	10.95	3.88 (3.75) Ni		
	(87)			(36.87)	(4.22)	(10.75)	7.00 (7.54) Co		
[Zn _{1/3} Co _{2/3} (HL) ₂]	Light pink	523.46	$C_{16}H_{22}Zn_{1/3}Co_{2/3}N_4O_{12}$	36.92	4.56	11.15	4.00 (4.16) Zn		
	(89)			(36.70)	(4.20)	(10.70)	7.82 (7.51) Co		

	IR spectroscopic data (cm ⁻¹)						
Compound	v _{O-H}	$v_{\text{N-H}}$	$\mathbf{v}_{\mathrm{C=N}}$	V _{coo}	v _{coo}	v _{N-N}	Electronic spectroscopic data $\lambda_{max}(nm); (\epsilon[M^{-1}cm^{-1}])$
				asym.	sym.		
$H_2L.H_2O$	3456	3215	1663	-	-	1054	240 (25400); 293 (18900)
[Co(HL) ₂]	3/3/	3200	1627	1542	1275	1048	241 (25900); 300(20200);
	5454	3209	1027	1342	1375	1040	516 (350)
[Ni(HL) ₂]	2424	2210	1605	1511	1275	1050	239 (25300); 293 (19300);
	3434	5210	1023	1344	1575	1030	388 (6000); 645 (250)
[Zn(HL) ₂]	3456	3112	1661	1536	1272	1054	242 (24200); 294 (18200)
	5450	5112	1001	1550	1372	1054	
[Ni _{1/3} Co _{2/3} (HL) ₂]	2424	2005	1625	1540	1275	1050	240 (24300); 292 (19200);
	3434	3093	1023	1342	1575	1050	384 (487); 521 (1800); 648 (160)
[Zn _{1/3} Co _{2/3} (HL) ₂]	2421	2000	1674	1520	1076	1040	242 (24200); 293 (18500);
	3431	3098	16/4	1539	13/6	1049	506 (240)

Table S2. FT-IR and UV-visible data

Table S3. Thermal data

Compounds	DTA peak	Thermogravimetry			Intermediates/End		
	temp (°C)	Temp.	Mass Loss%		products		
		range (°C)	Obs. Calc'd				
				•			
H ₂ L.H ₂ O	(+)104,(+)168	80-180	7.00	7.20	Melting, dehydration		
	(-)260	180-450	81.00	80.96	CH ₃ -CH=NH		
	(-)481	400-650	100.0	100.0	Complete decomposition		
[Co(HL) ₂]	(+)255	200-350	60.00	60.68	Cobalt propionate		
	(-)390	350-600	85.00	84.64	Co_3O_4		
[Ni(HL) ₂]	(+)255	200-350	60.00	60.72	Nickel propionate		
	(-)390	350-600	85.00	85.67	NiO		
$[Zn(HL)_2]$	(+)250	200-350	60.00	59.95	Zinc propionate		
	(-)490	350-600	85.00	84.58	ZnO		
[Ni _{1/3} Co _{2/3} (HL) ₂]	(+)260	200-350	60.00	6.83	Mixed-metal propionate		
	(-)390	350-600	86.00	84.61	NiCo ₂ O ₄		
[Zn _{1/3} Co _{2/3} (HL) ₂]	(+)250	200-350	60.00	60.43	Mixed-metal propionate		
	(-)455	350-600	85.00	84.25	ZnCo ₂ O ₄		

(+): endo; (-): exo

Fig. S1. FT-IR spectra of ligand and complexes.

Fig. S2. UV-visible electronic absorption spectra for various ligands and complexes $(10^{-3} \text{ M} \text{ concentration})$.

Fig. S3. Simultaneous TG-DTA of H_2L and complexes.

Fig. S4. PXRD patterns of the simulated single crystal crystallography data.

Fig. S5. Two dimensional structure of $H_2L.H_2O.$

Fig. S6. 2D structure created by O-H...O, N-H...O and C-H...O hydrogen bonds in cobalt complex down the b-axis.

$H_2L. H_2O$					[Co(HL) ₂]					
D-HA	d(D-H)/ Å	d(A-H)/Å	d(D-A)/ Å	D-H-A/°	D-HA	d(D-H) /Å	d(A-H)/ Å	d(D-A)/ Å	D-H-A /º	
N3-H3O3 ⁱ	0.880	2.152	2.968	154.10	N2-H2O1 ⁱ	0.808	1.907	2.666	135.06	
08-H8D06 ⁱⁱ	0.870	2.036	2.904	176.00	C2-H21BO1 ⁱ	0.990	2.672	3.290	120.75	
08-H8E06 ⁱⁱⁱ	0.870	2.026	2.879	166.25	O6-H6O2 ⁱⁱ	0.945	1.730	2.671	174.06	
C4-H44BO2 ^{iv}	0.990	2.638	3.612	167.6	C6-H6CO2 ⁱⁱⁱ	0.980	2.644	3.371	131.11	
O4-H4O2 ^v	0.840	1.855	2.661	160.21						
i. x,-1+y,z		i. x,1-y,-1/2+z iiix,1-y,-1/2+z								
ii. x, y, z	v.	x,-1/2-y,-	-1/2+z		ii. 1/2+x,-	1/2+y,z				
iii. 1-x,1/2+y,1/2-z										
[Zn(HL) ₂]					[Ni _{0.33} Co _{0.67} (HL) ₂]					
N2-H2O2 ⁱ	0.870	1.906	2.674	158.59	N2-H2O1 ⁱ	0.860	2.008	2.683	134.61	
C6-H6BO2 ⁱ	0.990	2.683	3.305	121.09	C8-H8AO2 ⁱⁱ	0.960	2.669	3.407	133.98	
O5-H5O3 ⁱⁱ	0.840	1.838	2.673	172.61	O3-H3O2 ⁱⁱⁱ	0.820	1.872	2.683	171.19	
C3-H3CO3 ⁱⁱⁱ	0.980	2.658	3.373	130.07						
i. x,1-y,-1/2	iii. 2	-x,1-y, 1-z		i. x,1-y,-1	/2+z iii. 1/2-x,-1/2+y, 1.5-z					
ii. 1.5-x,-1/2				ii. 1-x,1-y	,1-z					
$[Zn_{0.33} Co_{0.67} (HL)_2]$										
N2-H2O1 ⁱ	0.860	2.016	2.694	135.07						
C3-H3BO1 ⁱ	0.970	2.705	3.312	121.18						
O3-H3O2 ⁱⁱ	0.820	1.864	2.679	172.06						
C8-H8CO2 ⁱ	0.960	2.700	3.400	130.23						
i. x,1-y,-1/2+z ii1/2+x,-1/2+y, z]					

Fig. S7. FT-IR spectra of nanospinels.

Experimental

Synthesis of nanocrystalline NiCo₂O₄ and ZnCo₂O₄

The oxide nanomaterials were obtained by heating the mixed metal complexes to 500 °C in a muffle furnace and calcining for 4 h. The samples were slowly heated at a rate of 5 °C/min in a silica crucible, followed by calcination for about 4 h to attain homogeneity.

Materials and methods

All reagents and chemicals were of analytical reagent grade and were used without further purification. Double distilled water was used as a solvent for synthesis and analysis throughout the experiment. Elemental analysis for C, H, and N was performed using a Vario-ELIII elemental analyzer. Metal analyses were determined by complexometric titration using an EDTA (0.01 M) solution. The Fourier-Transform Infrared (FT-IR) spectra were recorded on a JASCO 4100 spectrophotometer on KBr pellets in the range of 4000-400 cm⁻¹. Electronic

absorption spectra were measured on a JASCO V-630 UV-vis spectrophotometer. The luminescence spectra were recorded with a Perkin-Elmer LS-55 spectrophotometer, with whole excitation and emission slit widths of 10 and 5 nm, respectively. Simultaneous TG-DTA studies were undertaken on a Perkin – Elmer SII thermal analyzer, and curves were obtained in air using platinum cups as holders with ~ 3 mg of each sample at a heating rate of 10 °C/min. Inductively coupled plasma atomic emission spectroscopy (ICPAES) was performed on a Perkin Elmer Optima 5300 DV spectrometer. The powder X-ray diffraction (PXRD) patterns were recorded using a Bruker D8 PHASER powder diffraction instrument with K α radiation of the Cu target as the light source ($\lambda = 1.54056$ Å) and a silicon plate as the sample stage (holder). For the PXRD measurements, a continuous step-scan mode with a step width of 0.030°, an equilibrium time of 256 seconds per step, and operating conditions of 30 kV & 10 mA were used.

The intensities for the X-ray determination of compounds were collected with Mo K α radiation (λ = 0.71073 Å) from a Bruker D8 Quest diffractometer equipped with a TRIUMPH monochromator and a CMOS detector. The crystal was kept at 300.0 K during data collection. Using Olex2,^[1] the structure was solved with the ShelXT^[2] structure solution program using intrinsic phasing and was refined with the ShelXL^[3] refinement package using least squares minimization.

The particle sizes and morphologies of the synthesized nanoparticles were determined by field emission scanning electron microscopy (FESEM) and energy dispersive spectrometry (EDS) on a JEOS JSM-6510. High-resolution transmission electron microscopy (HR-TEM) was carried out using a JEOL JEM 2100 instrument at an operating voltage 200 kV, using a carbon-coated copper grid. Meanwhile, selected area electron diffraction (SAED) was conducted to identify the crystallinity. XPS spectra were recorded by Kratos Axis-Ultra DLD, Kratos Analytical Ltd, Japan.

References

[1] O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, J. Appl.
Cryst. 2009, 42, 339.

[2] G. M. Sheldrick, *ActaCryst. A* **2015**, *71*, 3.

[3] G. M. Sheldrick, ActaCryst. C 2015, 71, 3.