Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Supporting Information

Martin Tlustý,[†] Hana Dvořáková,^J Jan Čejka,[§] Michal Kohout[†] and Pavel Lhoták^{†*}

[†]Department of Organic Chemistry, University of Chemistry and Technology, Prague (UCTP), Technicka 5, 166 28 Prague 6, Czech Republic ^JLaboratory of NMR Spectroscopy, UCTP, Technická 5, 166 28 Prague 6, Czech Republic. [§]Solid State Department, UCTP, Technicka 5, 166 28 Prague 6, Czech Republic

Table of Contents

1.	Spectral characterization of compounds	
2.	Dynamic NMR measurements	
3.	Chiral separation and ECD spectra	
4.	Crystallographic data	
5.	Titration experiments	
6.	Theoretical calculations	

1. Spectral characterization of compounds

Figure 1: ¹H NMR of compound 5a (CDCl₃, 400 MHz).

Figure 2: ¹³C(APT) NMR of compound **5a** (CDCl₃, 100 MHz).

Figure 4: IR of compound 5a (KBr).

Figure 8: IR of compound 5b (KBr).

Figure 9: ¹H NMR of compound **5c** (CDCl₃, 400 MHz).

Figure 10: ¹³C(APT) NMR of compound 5c (CDCl₃, 100 MHz).

Figure 12: IR of compound 5c (KBr).

Figure 13: ¹H NMR of compound 5d (CDCl₃, 400 MHz).

Figure 14: ¹³C(APT) NMR of compound 5d (CDCl₃, 100 MHz).

Figure 16: IR of compound 5d (KBr).

Figure 17: ¹H NMR of compound 8aa (CDCl₃, 400 MHz).

Figure 18: ¹³C(APT) NMR of compound **8aa** (CDCl₃, 100 MHz).

Figure 20: IR of compound 8aa (KBr).

Figure 21: UV of compound 8aa (CH₂Cl₂).

Figure 22: Fluorescence of compound 8aa (CH₂Cl₂, excitation wavelength 278 nm).

Figure 23: Fluorescence of compound 8aa (CH₂Cl₂, excitation wavelength 367 nm).

Figure 24: ¹H NMR of compound 8ab (CDCl₃, 400 MHz).

Figure 25: ¹³C NMR of compound 8ab (CDCl₃, 100 MHz).

Figure 26: HRMS of compound 8ab (ESI⁺).

Figure 27: IR of compound 8ab (KBr).

Figure 28: UV of compound 8ab (CH₂Cl₂).

Figure 29: Fluorescence of compound 8ab (CH₂Cl₂, excitation wavelength 278 nm).

Figure 30: Fluorescence of compound 8ab (CH₂Cl₂, excitation wavelength 370 nm).

Figure 31: ¹H NMR of compound 8ac (CDCl₃, 400 MHz).

Figure 32: ¹³C(APT) NMR of compound 8ac (CDCl₃, 100 MHz).

Figure 33: HRMS of compound 8ac (ESI⁺).

Figure 34: IR of compound 8ac (KBr).

Figure 35: UV of compound 8ac (CH₂Cl₂).

Figure 36: Fluorescence of compound 8ac (CH₂Cl₂, excitation wavelength 273 nm).

Figure 37: ¹H NMR of compound 8ad (CDCl₃, 400 MHz).

Figure 38: ¹³C(APT) NMR of compound 8ad (CDCl₃, 100 MHz).

Figure 39: HRMS of compound 8ad (ESI⁺).

Figure 40: IR of compound 8ad (KBr).

Figure 41: UV of compound 8ad (CH₂Cl₂).

Figure 42: Fluorescence of compound 8ad (CH₂Cl₂, excitation wavelength 273 nm).

Figure 43: ¹H NMR of compound 8ae (CDCl₃, 400 MHz).

Figure 44: ¹³C(APT) NMR of compound 8ae (CDCl₃, 100 MHz).

Figure 45: HRMS of compound 8ae (ESI⁺).

Figure 46: IR of compound 8ae (KBr).

Figure 47: UV of compound 8ae (CH₂Cl₂).

Figure 48: Fluorescence of compound 8ae (CH₂Cl₂, excitation wavelength 278 nm).

Figure 49: Fluorescence of compound 8ae (CH₂Cl₂, excitation wavelength 363 nm).

Figure 50: ¹H NMR of compound 8ba (CDCl₃, 400 MHz).

Figure 51: ¹³C(APT) NMR of compound 8ba (CDCl₃, 100 MHz).

Figure 52: HRMS of compound 8ba (ESI⁺).

Figure 53: IR of compound 8ba (KBr).

Figure 54: UV of compound 8ba (CH₂Cl₂).

Figure 55: Fluorescence of compound 8ba (CH₂Cl₂, excitation wavelength 280 nm).

Figure 56: Fluorescence of compound 8ba (CH₂Cl₂, excitation wavelength 358 nm).

Figure 57: ¹H NMR of compound **8bb** (CDCl₃, 400 MHz).

Figure 58: ¹³C(APT) NMR of compound 8bb (CDCl₃, 100 MHz).

Figure 59: HRMS of compound 8bb (ESI⁺).

Figure 60: IR of compound 8bb (KBr).

Figure 61: UV of compound 8bb (CH₂Cl₂).

Figure 62: Fluorescence of compound 8bb (CH₂Cl₂, excitation wavelength 237 nm).

Figure 63: Fluorescence of compound 8bb (CH₂Cl₂, excitation wavelength 279 nm).

Figure 64: Fluorescence of compound 8bb (CH₂Cl₂, excitation wavelength 358 nm).

2. Dynamic NMR measurements

Figure 65: Dynamic ¹H NMR measurements of 8ac (298 – 173 K, CD₂Cl₂, 500 MHz)

Figure 66: Dynamic ¹H NMR measurements of 8ae (298 – 173 K, CD₂Cl₂, 500 MHz)

Figure 67: Dynamic ¹H NMR measurements of 8ae (298 – 173 K, CD₂Cl₂, 500 MHz)

3. Chiral separation and ECD spectra

Figure 68: Preparative separation of **8aa** on Chiralpak IA ($250 \times 20 \text{ mm ID}$, 5 µm); the collected intervals of peaks are marked in colour. The analytical fraction purity control on ChiralArt Amylose-SA ($250 \times 4.6 \text{ mm ID}$, 5 µm) is depicted in the inset on the right: a) the first eluting enantiomer (**8aa-1**), b) the second eluting enantiomer (**8aa-2**).

The enantiomeric character of the separated substances **8aa-1** and **8aa-2** was verified by ECD spectroscopy using Jasco J-810 (Jasco).

Figure 69: ECD spectra of both separated enantiomers of **8aa** in MeOH, the first eluting enantiomer **8aa-1** full (blue) line, the second eluting enantiomer **8aa-2** dashed (orange) line.

4. Crystallographic data

Crystallographic data for 8aa

Data were collected at 180 (2) K on a D8 Venture Photon CMOS diffractometer with Incoatec microfocus sealed tube Cu-K α radiation. M = 813.07 g·mol⁻¹, monoclinic system, space group P21/c , a = 9.5527(2) Å, b = 17.1196(4) Å, c = 28.2418(6) Å, β = 91.7686(8)°, Z = 4, V = 4616.42(17) Å³, D_c = 1.170 g·cm⁻³, μ (Cu-K α) = 0.576 mm⁻¹, crystal dimensions of 0.169 × 0.185 × 0.449 mm. The structure was solved by direct methods¹⁷ and anisotropically refined by full matrix least squares on F squared using the CRYSTALS suite of programs¹⁸ to final value R = 0.059 and wR = 0.155 using 9364 independent reflections (Θ max = 74.4°), 560 parameters and 0 restrains. The hydrogen atoms were placed in calculated positions and refined with riding constrains. The structure was deposited into Cambridge Structural Database under number CCDC 1985895.

Figure 70: X-ray structure of compound 8aa

17. A. Altomare, G. Cascarano, C. Giacovazzo, A. Guagliardi, M. C. Burla, G. Polidori and M. Camalli, *J. Appl. Crystallogr.*, 1994, **27**, 435-436. 18. P. W. Betteridge, J. R. Carruthers, R. I. Cooper, K. Prout and D. J. Watkin, *J. Appl. Crystallogr.*, 2003, **36**, 1487.

5. Titration experiments

Calixarene **8aa** was dissolved in specified amount of CH_2Cl_2 (solution 1). 0.9 ml of calixarene solution 1 was put in a volumetric flask and diluted to total volume of 5 ml (solution 2). 2.5 ml of solution 2 was put to a fluorescence cuvette. Specified amount of *N*-methylquinolinium iodide (NMQI) was put to another volumetric flask, 0.9 ml of solution 1 was added and the solution was diluted to total volume of 5 ml (solution 3). The aliquots of NMQI were gradually added to fluorescence tube to achieve different calixarene/guest rations (1:0.000-29.258), ensuring constant host concentration during the experiment. The complexation constants were determined by analyzing fluorescence intensity using nonlinear curve-fitting procedure (program BindFit).

	V (total) [m \	addition, total) [n/	V(addition)	[ml]	c(NMQI) [mol/] c(8aa) [mol/] c(NMQI)/c(8a	fluorescer	fluorescer	fluorescen	
1	2.500000	0.000000	0.0	000000	0.0000	0.0001	0.000000	259.4109	214.634	172.8671	
2	2.503000	0.003000	0.0	003000	0.0000	.7 0.0001	31 0.131502	260.0261	216.1471	173.4606	
3	2.510000	0.010000	0.0	007000	0.0000	0.0001	31 0.437119	255.4534	213.2857	168.7682	
4	2.520000	0.020000	0.0	010000	0.0001	.4 0.0001	31 0.870768	248.1394	210.6184	166.4995	
5	2.535000	0.035000	0.0	015000	0.00019	0.0001	31 1.514828	220.8578	195.1219	153.7419	
6	2.563000	0.063000	0.0	028000	0.0003	0.0001	31 2.696902	175.3186	163.8034	134.8889	
7	2.613000	0.113000	0.0	050000	0.00062	0.0001	31 4.744738	130.4499	135.6293	112.7	
8	2.681000	0.181000	0.0	068000	0.0009	0 0.0001	31 7.407216	82.97461	99.07418	84.9652	
9	2.749000	0.249000	0.0	068000	0.00130	0.0001	31 9.937974	54.70518	74.07558	67.35785	
10	2.500000	0.300000	0.3	300000	0.00172	0.0001	31 13.166019	31.80076	49.06158	46.55412	
11	2.600000	0.400000	0.:	100000	0.0022	1 0.0001	31 16.879512	18.80015	35.57058	35.26059	
12	2.700000	0.500000	0.:	100000	0.0026	0.0001	31 20.317931	13.07971	27.01264	26.90764	
13	2.800000	0.600000	0.3	100000	0.00308	0.0001	31 23.510748	7.7923	19.87785	20.12643	
14	2.900000	0.700000	0.:	100000	0.00340	i9 0.0001	31 26.483372	5.599566	15.2689	16.598	
15	3.000000	0.800000	0.:	100000	0.00383	0.0001	31 29.257820	3.624555	11.72142	13.00782	
	K Error	899.1 1 53.0621847 1	Intensity [a.u.]	200 - 150 - 100 - 50 -		•	•	•	• •	•	
				0	5	10	15	20	25	30	
				equiv. of NMQI							

Figure 71:¹H NMR titration of compound 8aa with NMQI (CH₂Cl₂).

Calixarene **8aa** was dissolved in specified amount of CH_2Cl_2 (solution 1). 0.9 ml of calixarene solution 1 was put in a volumetric flask and diluted to total volume of 5 ml (solution 2). 2.5 ml of solution 2 was put to a fluorescence cuvette. Specified amount of *N*-methylisoquinolinium iodide (NMII) was put to another volumetric flask, 0.9 ml of solution 1 was added and the solution was diluted to total volume of 5 ml (solution 3). The aliquots of NMII were gradually added to fluorescence tube to achieve different calixarene/guest rations (1:0.000-29.829), ensuring constant host concentration during the experiment. The complexation constants were determined by analyzing fluorescence intensity using nonlinear curve-fitting procedure (program BindFit).

	V (total) [m V(ac	dition, total) [n V(add	lition) [ml]	c(NMII) [mol/l]	c(8aa) [mol/l]	c(NMII)/c(8aa f	luorescer f	luorescer
1	2.500000	0.000000	0.000000	0.000000	0.000131	0.000000	199.50	243.23
2	2.503000	0.003000	0.003000	0.000018	0.000131	0.134068	197.76	242.87
3	2.510000	0.010000	0.007000	0.000058	0.000131	0.445646	195.15	234.48
4	2.520000	0.020000	0.010000	0.000116	0.000131	0.887755	186.37	227.34
5	2.535000	0.035000	0.015000	0.000202	0.000131	1.544378	171.23	206.87
6	2.563000	0.063000	0.028000	0.000360	0.000131	2.749511	160.41	193.46
7	2.613000	0.113000	0.050000	0.000634	0.000131	4.837295	123.14	145.56
8	2.681000	0.181000	0.068000	0.000989	0.000131	7.551710	90.53	106.22
9	2.749000	0.249000	0.068000	0.001327	0.000131	10.131836	69.44	80.25
10	2.500000	0.300000	0.300000	0.001758	0.000131	13.422851	41.66	46.33
11	2.600000	0.400000	0.100000	0.002254	0.000131	17.208783	28.83	31.09
12	2.700000	0.500000	0.100000	0.002713	0.000131	20.714276	20.07	20.68
13	2.800000	0.600000	0.100000	0.003140	0.000131	23.969377	14.18	14.46
14	2.900000	0.700000	0.100000	0.003537	0.000131	26.999988	9.61	8.60
15	3.000000	0.800000	0.100000	0.003907	0.000131	29.828558	5.83	6.29

Figure 72: ¹H NMR titration of compound 8aa with NMII (CH₂Cl₂).

Calixarene **8aa-1** was dissolved in specified amount of CH_2Cl_2 (solution 1). 0.55 ml of calixarene solution 1 was put in a volumetric flask and diluted to total volume of 5 ml (solution 2). 2.5 ml of solution 2 was put to a fluorescence cuvette. Specified amount of (*S*)-1-Methyl-3-(1-methylpyrrolidin-2-yl)pyridinium iodide (NMNI) was put to another volumetric flask, 0.55 ml of solution 1 was added and the solution was diluted to total volume of 5 ml (solution 3). The aliquots of NMNI were gradually added to fluorescence tube to achieve different calixarene/guest rations (1:0.000-28.323), ensuring constant host concentration during the experiment. The complexation constants were determined by analyzing fluorescence intensity using nonlinear curve-fitting procedure (program BindFit).

	V (total) [m V(ad	ddition, total) [n V(addi	ition) [ml]	c(NMNI) [mol/l]	c(8aa-1) [mol/l]	c(NMNI)/c(8a	fluorescer	fluorescer	fluorescer
1	2.500000	0.000000	0.000000	0.000000	0.000115	0.000000	214.554	168.6094	11.92773
2	2.503000	0.003000	0.003000	0.000015	0.000115	0.127300	220.0388	172.3604	12.35316
3	2.510000	0.010000	0.007000	0.000049	0.000115	0.423149	216.0294	170.5441	12.06353
4	2.520000	0.020000	0.010000	0.000097	0.000115	0.842939	199.5746	160.2873	10.7974
5	2.535000	0.035000	0.015000	0.000169	0.000115	1.466415	194.2098	154.7734	10.0219
6	2.563000	0.063000	0.028000	0.000300	0.000115	2.610710	157.0061	124.2024	7.802997
7	2.613000	0.113000	0.050000	0.000528	0.000115	4.593098	122.8441	97.17803	5.562119
8	2.681000	0.181000	0.068000	0.000824	0.000115	7.170484	86.11126	69.17575	3.225509
9	2.749000	0.249000	0.068000	0.001106	0.000115	9.620359	62.52728	49.62094	1.671861
10	2.500000	0.300000	0.300000	0.001465	0.000115	12.745237	36.09595	29.07918	0.903414
11	2.600000	0.400000	0.100000	0.001878	0.000115	16.340048	25.90681	20.86432	0.522382
12	2.700000	0.500000	0.100000	0.002261	0.000115	19.668576	18.55095	15.5127	0.429352
13	2.800000	0.600000	0.100000	0.002616	0.000115	22.759352	14.23187	11.17925	0.187106
14	2.900000	0.700000	0.100000	0.002947	0.000115	25.636972	11.35532	9.01088	0.215326
15	3.000000	0.800000	0.100000	0.003256	0.000115	28.322750	9.48248	7.566717	0.05596

Figure 73: ¹H NMR titration of compound 8aa-1 with NMNI (CH₂Cl₂).

Calixarene **8aa-2** was dissolved in specified amount of CH_2Cl_2 (solution 1). 0.8 ml of calixarene solution 1 was put in a volumetric flask and diluted to total volume of 5 ml (solution 2). 2.5 ml of solution 2 was put to a fluorescence cuvette. Specified amount of (*S*)-1-Methyl-3-(1-methylpyrrolidin-2-yl)pyridinium iodide (NMNI) was put to another volumetric flask, 0.8 ml of solution 1 was added and the solution was diluted to total volume of 5 ml (solution 3). The aliquots of NMNI were gradually added to fluorescence tube to achieve different calixarene/guest rations (1:0.000-32.032), ensuring constant host concentration during the experiment. The complexation constants were determined by analyzing fluorescence intensity using nonlinear curve-fitting procedure (program BindFit).

1	/ (total) [m V	(addition, total) [n V(addi	tion) [r	nl]	c(NMNI) [mol/l]	c(8aa-2) [mol/l]	c(NMNI)/c(8a	fluorescer	fluorescer	fluorescen
1	2.500000	0.000000	0.00	0000	0.000000	0.000115	0.000000	262.0602	202.5699	7.959859
2	2.503000	0.003000	0.00	3000	0.000017	0.000115	0.143970	262.1531	205.9744	7.704388
3	2.510000	0.010000	0.00	7000	0.000055	0.000115	0.478563	254.4821	199.7941	7.562208
4	2.520000	0.020000	0.01	0000	0.000110	0.000115	0.953328	246.8108	195.6015	6.998728
5	2.535000	0.035000	0.01	5000	0.000191	0.000115	1.658451	226.1117	177.2112	6.483453
6	2.563000	0.063000	0.02	8000	0.000340	0.000115	2.952600	180.8214	142.5319	4.997797
7	2.613000	0.113000	0.05	0000	0.000599	0.000115	5.194595	131.2368	105.4533	3.291471
8	2.681000	0.181000	0.06	8000	0.000934	0.000115	8.109507	93.04965	72.8703	2.186102
9	2.749000	0.249000	0.06	8000	0.001254	0.000115	10.880210	67.74667	54.28183	0.969769
10	2.500000	0.300000	0.30	0000	0.001661	0.000115	14.414313	41.72074	33.80562	0.665596
11	2.600000	0.400000	0.10	0000	0.002129	0.000115	18.479888	29.27642	24.25861	0.448374
12	2.700000	0.500000	0.10	0000	0.002563	0.000115	22.244309	23.11673	18.18512	0.182004
13	2.800000	0.600000	0.10	0000	0.002966	0.000115	25.739844	17.3428	14.39961	0.156406
14	2.900000	0.700000	0.10	0000	0.003341	0.000115	28.994307	13.2909	10.82477	0.218079
15	3.000000	0.800000	0.10	0000	0.003691	0.000115	32.031806	12.00225	9.671965	0.041457
				200	•					
	К	1145.54 M ⁻¹		150						
	Frror	63,41938548 M ⁻¹			•					
	2.1.01		17	100	•					
			a.	100						
			≥			•				
			Isi	50						
			tel				•	•	•	•
			느	0					-	-
					0 5	10	15 20	25	30)
							of NIMANU			
						equiv	. or iniviti			

Figure 74: ¹H NMR titration of compound 8aa-2 with NMNI (CH₂Cl₂).

Calixarene **8bb** was dissolved in specified amount of CH_2Cl_2 (solution 1). 0.25 ml of calixarene solution 1 was put in a volumetric flask and diluted to total volume of 5 ml (solution 2). 2.5 ml of solution 2 was put to a fluorescence cuvette. Specified amount of *N*-methylisoquinolinium iodide (NMII) was put to another volumetric flask, 0.25 ml of solution 1 was added and the solution was diluted to total volume of 5 ml (solution 3). The aliquots of NMII were gradually added to fluorescence tube to achieve different calixarene/guest rations (1:0.000-47.816), ensuring constant host concentration during the experiment. The complexation constants were determined by analyzing fluorescence intensity using nonlinear curve-fitting procedure (program BindFit).

		M(NMII) m(NMII) c(NMII) V(CH2Cl2_NMII)	271.10147 0.0236 0.017410455 5	g/mol g mol/l ml		M(8bb) m(8bb) c(8bb) V(CH2Cl2_8bb)	1045.336 0.00051 0.000097 5	g/mol g mol/l ml	0.00203		
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	V (total) [m 2.50000 2.503000 2.510000 2.520000 2.535000 2.63000 2.643000 2.643000 2.643000 2.643000 2.749000 2.500000 2.700000 2.800000 2.900000 3.000000	V(addition, total) [n 0.000000 0.03000 0.020000 0.035000 0.063000 0.113000 0.113000 0.249000 0.300000 0.400000 0.500000 0.500000 0.600000 0.700000 0.800000	V(addition) [ml] 0.000000 0.003000 0.010000 0.015000 0.028000 0.050000 0.068000 0.068000 0.068000 0.100000 0.0050000 0.0000000 0.000000 0.0000000 0.00000000	c(NMII) [mol/l] 0.00000 0.00021 0.00069 0.00138 0.00240 0.000428 0.000753 0.001175 0.001577 0.002089 0.002679 0.003224 0.003731 0.004203 0.004643	c(8bb) [mol/l] 0.000097 0.000097 0.000097 0.000097 0.000097 0.000097 0.000097 0.000097 0.000097 0.000097 0.000097 0.000097 0.000097	c(NMII)/c(8b) 0.00000 0.214912 0.714375 1.423080 2.475655 4.407496 7.754236 12.105473 16.241442 21.516976 27.585867 33.205210 38.423172 43.281274 47.815502	fluorescer 912.8894 918.936 854.0452 756.7221 636.897 416.2254 267.4121 167.2709 101.6831 51.65318 43.51534 29.09026 19.23077 13.95126 12.45473	fluorescer 554,7544 550,1825 503,3274 435,3731 352,2045 212,9528 131,3659 77,98933 48,08674 25,47579 20,50124 14,19861 9,838295 7,491844 6,806807	fluorescer 707.7678 706.7305 675.0663 600.1621 493.3597 318.4914 194.7122 116.62 66.85209 30.22287 23.91788 12.89789 8.578782 5.394998 4.390254	fluorescen 231.7736 219.8474 193.0115 158.2693 113.8643 64.62449 36.99195 18.89854 9.97151 6.16394 4.603973 3.268435 2.40634 1.796158 1.555014
	Error	160.1946681	Intensity [a.1	600 500 400 300 200 100 0 0	•	• • • • • • • • • • • • • • • • • • •	• 30 uiv. of NMII	• •	• •	50	

Figure 75: ¹H NMR titration of compound 8bb with NMII (CH₂Cl₂).

Calixarene **8bb** was dissolved in specified amount of CH_2Cl_2 (solution 1). 0.20 ml of calixarene solution 1 was put in a volumetric flask and diluted to total volume of 5 ml (solution 2). 2.5 ml of solution 2 was put to a fluorescence cuvette. Specified amount of *N*-methylquinolinium iodide (NMII) was put to another volumetric flask, 0.20 ml of solution 1 was added and the solution was diluted to total volume of 5 ml (solution 3). The aliquots of NMQI were gradually added to fluorescence tube to achieve different calixarene/guest rations (1:0.000-48.930), ensuring constant host concentration during the experiment. The complexation constants were determined by analyzing fluorescence intensity using nonlinear curve-fitting procedure (program BindFit).

		M(NMQI)	271.10147	g/mol		M(8bb)	1045.336	g/mol		
		m(NMQI)	0.01932	g		m (8bb)	0.00041	g	0.00203	
		c(NMQI)	0.014252966	mol/l		c(8bb)	0.000078	mol/l		
		V(CH2Cl2_NMQI)	5	ml		V(CH2Cl2_8bb)	5	ml		
,	V (total) [m	V(addition, total) [n V(ad	dition) [ml]	c(NMQ	I) [mol/l]	c(8bb) [mol/l]	c(NMQI)/c(8t	fluorescer	fluorescer	fluorescen
1	2.500000	0.000000	0.000000		0.000000	0.000078	0.000000	365.1827	485.1543	607.8722
2	2.503000	0.003000	0.003000		0.000017	0.000078	0.219920	342.6986	469.8418	609.3022
3	2.510000	0.010000	0.007000		0.000057	0.000078	0.731024	302.6639	445.1225	568.4015
4	2.520000	0.020000	0.010000		0.000113	0.000078	1.456245	274.4518	431.9343	558.2444
5	2.535000	0.035000	0.015000		0.000197	0.000078	2.533350	214.0205	368.4146	479.0066
6	2.563000	0.063000	0.028000		0.000350	0.000078	4.510213	155.8725	304.4912	396.8813
7	2.613000	0.113000	0.050000		0.000616	0.000078	7.934949	102.4513	235.2298	297.187
8	2.681000	0.181000	0.068000		0.000962	0.000078	12.387592	66.37468	160.5352	195.5901
9	2.749000	0.249000	0.068000		0.001291	0.000078	16.619951	40.62778	96.61857	103.943
10	2.500000	0.300000	0.300000		0.001710	0.000078	22.018431	23.0515	55.73735	57.59327
11	2.600000	0.400000	0.100000		0.002193	0.000078	28.228758	12.44105	29.93987	24.47273
12	2.700000	0.500000	0.100000		0.002639	0.000078	33.979060	8.291224	19.32528	14.38439
13	2.800000	0.600000	0.100000		0.003054	0.000078	39.318627	6.288636	13.7365	9.15774
14	2.900000	0.700000	0.100000		0.003440	0.000078	44.289947	4.905201	9.962555	5.378346
15	3.000000	0.800000	0.100000		0.003801	0.000078	48.929847	3.255194	7.288543	3.323562
			4	100						
			-							
			3	300 •						
	к	1567.44 M ⁻	[i] 2	250						
	Error	118.4827896 M ⁻¹	y [a							
			hsit	.00						
			Inte	50	•					
			1	.00	•					
				50		•				
				55		• •				
				0	1/	1 20	- 20		•••	50
				U	10	, 20		40	-	
						equ				

Figure 76: ¹H NMR titration of compound **8bb** with NMQI (CH₂Cl₂).

6. Theoretical calculations

Internal coordinates

8bb conformer A

scf done -3268.09338322

С	0	0	0
С	0	1.403668	0
С	1.200752	2.121073	0
С	2.419094	1.437399	-0.06894
С	2.461508	0.033934	-0.07678
С	1.241481	-0.66436	0.037414
С	-1.28651	-0.79703	-0.16499
0	1.236261	-2.06361	0.078106
С	-1.21746	-1.1186	-3.98339
С	-1.2422	-0.57879	-2.6963
С	-1.37968	-1.40128	-1.56759
С	-1.51994	-2.78671	-1.77237
С	-1.42431	-3.35865	-3.05579
С	-1.28102	-2.50252	-4.15687
С	0.742526	-5.80234	-0.92009
0	-1.74469	-3.63894	-0.66136
С	-1.41594	-4.87397	-3.25926
С	-0.159	-5.72764	-5.27402
С	-0.14161	-5.34468	-3.94849
С	1.126402	-5.25287	-3.28932
С	2.343283	-5.43036	-3.95006
С	2.311971	-5.92181	-5.30036
С	1.039646	-6.01826	-5.97147

0	1.157609	-4.83482	-1.96006
С	3.616513	-3.41555	-3.11732
С	3.829311	-2.77918	-1.87905
С	3.718877	-1.38352	-1.73468
С	3.483242	-0.61451	-2.88419
С	3.340934	-1.21851	-4.13436
С	3.384611	-2.61035	-4.24226
С	3.763698	-0.70821	-0.36332
0	4.139157	-3.56428	-0.73921
С	1.517259	-7.51392	0.782972
С	1.699153	-2.70872	1.321975
С	0.545175	-2.95565	2.292973
С	1.007772	-3.71471	3.548539
С	-3.16235	-3.79119	-0.28696
С	-3.24045	-4.77845	0.86996
С	5.577305	-3.83237	-0.555
С	7.218719	-4.97543	1.008973
С	1.933936	-6.58395	-0.36972
С	-4.68688	-5.01102	1.337143
С	5.744491	-4.64636	0.721192
С	3.603884	-4.93973	-3.24009
С	3.423278	-6.39205	-6.08905
N	0.935097	-6.3364	-7.29758
С	2.052743	-6.57063	-7.99445
N	3.282779	-6.656	-7.39213
С	1.921319	-6.74473	-9.46383
С	2.901652	-7.32879	-10.3265
С	2.621706	-7.40722	-11.739
С	1.389496	-6.90611	-12.2682
С	0.449261	-6.3515	-11.3824
С	0.711578	-6.28148	-10.0238
С	4.154811	-7.88241	-9.86998
С	5.051339	-8.44542	-10.7327
С	4.805314	-8.51925	-12.144
С	3.572123	-7.99209	-12.6396
С	3.297506	-8.0593	-14.0453
С	2.052021	-7.53339	-14.5344
С	1.139791	-6.98344	-13.6817
С	5.726484	-9.09089	-13.0425
С	5.449838	-9.14792	-14.4099
С	4.248504	-8.63798	-14.9074
С	4.794915	-6.68566	-5.57028
С	5.877607	-6.00415	-6.15076
С	7.186445	-6.23007	-5.73421
С	7.469332	-7.17354	-4.73037
С	6.388388	-7.91666	-4.15608

С	5.0394	-7.67913	-4.5842
С	6.664064	-8.90166	-3.15415
С	5.598224	-9.6683	-2.58557
С	4.260427	-9.42969	-3.05528
С	3.993253	-8.48505	-4.00502
С	8.810232	-7.42208	-4.27052
С	9.068812	-8.35316	-3.3067
С	8.009267	-9.12783	-2.71563
С	8.253628	-10.0986	-1.72596
С	7.205114	-10.8405	-1.17646
С	5.891135	-10.631	-1.60112
Н	-0.94889	1.933184	-0.00621
н	1.186288	3.206323	0.014707
н	3.349619	1.9942	-0.13984
н	-1.33372	-1.60638	0.564845
н	-2.1399	-0.13011	0.016176
н	-1.11441	-0.46667	-4.84498
н	-1.12348	0.491147	-2.55674
н	-1.20078	-2.92848	-5.15238
н	0.265899	-5.18497	-0.15843
н	-0.00659	-6.48973	-1.33389
н	-1.54412	-5.35319	-2.28782
н	-2.26747	-5.17115	-3.88417
н	-1.0835	-5.7784	-5.83821
н	3.386443	0.462553	-2.78705
н	3.165218	-0.61044	-5.01613
н	3.217782	-3.08182	-5.20575
н	3.974204	-1.46747	0.392053
н	4.586486	0.017605	-0.33023
н	2.379028	-8.06888	1.16953
н	1.084653	-6.94615	1.616564
н	0.768802	-8.2474	0.456392
н	2.161486	-3.63857	0.989686
н	2.468862	-2.08725	1.796581
Н	-0.23566	-3.51793	1.767955
Н	0.105641	-1.99193	2.584256
Н	1.77934	-3.15529	4.09261
Н	1.428469	-4.69457	3.288785
Н	0.172392	-3.88264	4.237233
Н	-3.56824	-2.81103	-0.00131
н	-3.72828	-4.15275	-1.157
н	-2.78708	-5.72684	0.554939
н	-2.6318	-4.39776	1.699642
н	6.115572	-2.87637	-0.49035
н	5.958462	-4.37996	-1.42767
н	7.31498	-5.56106	1.929481

Н	7.662475	-5.56034	0.194166
Н	7.815459	-4.06282	1.130612
Н	2.691817	-5.86798	-0.03284
Н	2.388669	-7.17583	-1.17566
Н	-5.14966	-4.07833	1.682527
Н	-5.30852	-5.41304	0.527564
Н	-4.71884	-5.7251	2.16691
Н	5.16354	-5.57232	0.626915
Н	5.310307	-4.08372	1.557468
Н	3.655623	-5.36443	-2.23768
Н	4.492618	-5.26171	-3.78067
Н	-0.49014	-5.97221	-11.7739
Н	-0.02142	-5.85985	-9.34857
Н	4.376737	-7.82092	-8.81584
Н	5.983415	-8.85335	-10.3511
Н	1.851479	-7.58662	-15.6007
Н	0.198641	-6.59166	-14.0567
Н	6.660314	-9.48979	-12.6569
Н	6.170755	-9.59142	-15.0894
Н	4.035123	-8.68479	-15.9714
Н	5.674787	-5.28117	-6.93262
Н	8.002167	-5.67421	-6.18647
Н	3.45486	-10.0306	-2.64318
Н	2.975707	-8.34085	-4.34602
Н	9.618718	-6.84821	-4.71391
Н	10.08613	-8.53062	-2.97017
Н	9.273522	-10.2683	-1.39337
Н	7.413588	-11.5865	-0.41638
н	5.08033	-11.2139	-1.17418

8bb conformer B

scf done: -3268.09332681

С	0	0	0
С	0	1.403645	0
С	1.200875	2.121208	0
С	2.418987	1.437308	-0.0719
С	2.460787	0.033826	-0.08001
С	1.241342	-0.66388	0.039299
С	-1.28434	-0.79848	-0.17323
0	1.235707	-2.06273	0.087806
С	-1.17849	-1.10392	-3.99246
С	-1.2177	-0.569	-2.70379
С	-1.36581	-1.39624	-1.57983
С	-1.50207	-2.78099	-1.79149
С	-1.39194	-3.34804	-3.07605
С	-1.23795	-2.48727	-4.17199
С	0.783889	-5.74401	-0.92807
0	-1.73107	-3.63697	-0.68418
С	-1.38475	-4.86185	-3.28703
С	-0.12633	-5.73877	-5.29113
С	-0.10914	-5.33968	-3.96961
С	1.157578	-5.24345	-3.30852
С	2.373892	-5.44376	-3.96367
С	2.338457	-5.97138	-5.29907
С	1.071531	-6.05471	-5.97905
0	1.190283	-4.79586	-1.98852
С	3.620931	-3.40581	-3.14508
С	3.835581	-2.7726	-1.90588
С	3.702842	-1.37977	-1.752
С	3.438094	-0.60936	-2.89417
С	3.290867	-1.20928	-4.14577
С	3.36052	-2.59901	-4.2627
С	3.759066	-0.70976	-0.37812

0	4.1719	-3.55971	-0.77411
С	1.567962	-7.44788	0.779105
С	1.722557	-2.70028	1.326395
С	0.574619	-2.99503	2.29161
С	1.058181	-3.75503	3.538445
С	-3.15055	-3.80924	-0.32725
С	-3.22791	-4.79648	0.82988
С	5.618947	-3.77098	-0.58655
С	7.300052	-4.8565	0.976292
С	1.976134	-6.53094	-0.38683
С	-4.67646	-5.05044	1.278859
С	5.814321	-4.59069	0.682006
С	3.64257	-4.92846	-3.28313
С	3.444066	-6.5028	-6.05584
Ν	0.976115	-6.39108	-7.30137
С	2.097749	-6.66258	-7.97962
Ν	3.313529	-6.7861	-7.35628
С	1.981448	-6.85096	-9.44897
С	2.959257	-7.46577	-10.2933
С	2.692274	-7.55877	-11.7076
С	1.47514	-7.0428	-12.2569
С	0.537573	-6.45626	-11.3889
С	0.787604	-6.3712	-10.0289
С	4.197476	-8.03577	-9.81666
С	5.09334	-8.6249	-10.6625
С	4.860057	-8.71419	-12.0748
С	3.640915	-8.17364	-12.5902
С	3.378227	-8.25797	-13.9973
С	2.146948	-7.71809	-14.5064
С	1.237112	-7.13804	-13.6712
С	5.779993	-9.31455	-12.9558
С	5.514999	-9.3882	-14.3246
С	4.327066	-8.86613	-14.8413
С	4.72927	-6.94521	-5.43909
С	4.658569	-7.84698	-4.36095
С	5.803465	-8.38097	-3.77941
С	7.080477	-8.02499	-4.24902
С	7.183336	-7.10552	-5.34192
С	5.999855	-6.5676	-5.95229
С	8.477903	-6.72997	-5.8251
С	8.59983	-5.80788	-6.91185
С	7.397955	-5.27468	-7.493
С	6.161655	-5.63322	-7.0385
С	8.283282	-8.55586	-3.66452
С	9.515526	-8.19793	-4.12968
С	9.659074	-7.27361	-5.22332

С	10.91994	-6.89037	-5.71831
С	11.02746	-5.99046	-6.78135
С	9.881798	-5.45332	-7.37292
Н	-0.94905	1.932873	-0.00701
Н	1.186513	3.206425	0.015184
Н	3.349541	1.99368	-0.14626
Н	-1.33343	-1.61225	0.551713
Н	-2.14012	-0.1343	0.006214
Н	-1.06736	-0.44855	-4.85045
Н	-1.1017	0.5005	-2.55902
Н	-1.14569	-2.90943	-5.16809
Н	0.326846	-5.11019	-0.16834
Н	0.020065	-6.42905	-1.31802
Н	-1.52189	-5.34626	-2.31916
Н	-2.23324	-5.15332	-3.91875
Н	-1.05001	-5.78647	-5.85696
Н	3.322682	0.465198	-2.79048
Н	3.093219	-0.59962	-5.02175
Н	3.194334	-3.06818	-5.22756
Н	3.973474	-1.47285	0.372342
Н	4.583859	0.013921	-0.34798
Н	2.429609	-8.00778	1.158915
Н	1.152393	-6.869	1.613662
Н	0.808358	-8.17686	0.469154
Н	2.22024	-3.61077	0.989895
Н	2.466845	-2.0533	1.807717
Н	-0.18814	-3.57398	1.758154
Н	0.104854	-2.04877	2.592562
Н	1.810758	-3.17878	4.091486
Н	1.510265	-4.71754	3.266622
Н	0.227294	-3.95831	4.222941
Н	-3.57456	-2.83497	-0.04753
Н	-3.70089	-4.18031	-1.20324
Н	-2.75619	-5.7381	0.52138
Н	-2.63521	-4.40597	1.666547
Н	6.118	-2.79499	-0.50972
Н	6.025132	-4.29303	-1.46366
Н	7.417136	-5.44945	1.889715
Н	7.776299	-5.40828	0.156595
Н	7.853349	-3.91937	1.114267
Н	2.746064	-5.81922	-0.06924
Н	2.410958	-7.134	-1.19585
Н	-5.15797	-4.12412	1.615688
Н	-5.28101	-5.46376	0.462094
Н	-4.70827	-5.76301	2.109892
Н	5.274935	-5.54022	0.57474

Н	5.350632	-4.05677	1.521245
Н	3.745561	-5.36454	-2.2888
Н	4.52013	-5.22072	-3.85995
Н	-0.3904	-6.06464	-11.7953
Н	0.055783	-5.92609	-9.36757
Н	4.408432	-7.96811	-8.76086
Н	6.014717	-9.04219	-10.2656
Н	1.955282	-7.78503	-15.5736
Н	0.306745	-6.73524	-14.0611
Н	6.703368	-9.72294	-12.5552
Н	6.234546	-9.85425	-14.9904
Н	4.122629	-8.92612	-15.9064
Н	3.682445	-8.13851	-3.98823
Н	5.716322	-9.08643	-2.95846
Н	7.491954	-4.57183	-8.31552
Н	5.275278	-5.23091	-7.5095
Н	8.186763	-9.25515	-2.83906
Н	10.41528	-8.60762	-3.67983
Н	11.81447	-7.30496	-5.26269
Н	12.00798	-5.70675	-7.15002
Н	9.970913	-4.75388	-8.1989