Multifunctional polymers with interpenetrating structures: luminescent sensing, ECL behaviors, selective detection of Fe³⁺ ion and rapid removal of anionic dyes

Lingshu Meng, Lun Zhao*, Guanlin Guo, Xin Liu

College of Chemistry, Changchun Normal University, Changchun, 130032, Jilin, P. R. China; * Correspondence: E-mail: zhaolun7511@126.com; Tel.: +86-431-86168903(L Zhao)

Table S1 Crystal and Structure Refinement Data for Compounds 1-3					
Compound	1	2	3		
CCDC No.	1978114	1978115	1978117		
Formula	$C_{50}H_{44}Cd_2N_{10}O_{16}$	$C_{68}H_{66}N_{12}O_{11}Zn_2$	$C_{64}H_{54}N_{10}O_{15}Zn_2$		
Fw	1265.75	1358.07	1333.91		
Crystal system	Monoclinic	Monoclinic	Orthorhombic		
Space group	Ia	C2/c	Pbcn		
a/Å	18.3533(9)	22.4550(10)	23.392(4)		
b/Å	6.6978(3)	13.5382(6)	11.662(2)		
c/Å	28.1756	24.5285(10)	27.060(5)		
α(°)	90.00	90.00	90.00		
$\beta(^{\circ})$	95.0010(10)	112.0620(10)	90.00		
γ(°)	90.00	90.00	90.00		
$V(Å^3)$	3450.3(3)	6910.7(5)	7382(2)		
Ζ	2	4	4		
$Dc(g \text{ cm}^{-3})$	1.218	1.305	1.200		
μ/mm^{-1}	0.677	0.760	0.714		
<i>F</i> (000)	1276	2824	2752		
GOF on F^2	1.129	1.069	1.183		
$R_1/wR_2[I>2\sigma(I)]$	0.0529, 0.1506	0.0718, 0.2190	0.0975, 0.2779		
R_1/wR_2 (all data)	0.0675, 0.1647	0.0998, 0.2518	0.1755, 0.3464		

Compound 1					
N(5)-Cd(1)#2	2.258(11)	O(1)-Cd(1)#1	2.306(8)		
O(2)-Cd(1)#1	2.470(13)	O(3)-Cd(1)	2.396(10)		
O(4)-Cd(1)	2.290(11)	Cd(1)-N(5)#3	2.258(11)		
O(1)-Cd(1)#1	2.306(8)	O(2)-Cd(1)#1	2.470(13)		
O(3)-Cd(1)	2.396(10)	O(4)-Cd(1)	2.290(11)		
Cd(1)-N(5)#3	2.258(11)	Cd(1)-O(1)#4	2.306(8)		
Cd(1)-O(2)#4	2.470(13)	N(2)-Cd(1)	2.238(11)		
N(2)-Cd(1)-N(5)#3	105.50(18)	N(2)-Cd(1)-O(4)	97.7(4)		
N(5)#3-Cd(1)-O(4)	140.3(4)	N(2)-Cd(1)-O(1)#4	140.8(4)		
N(5)#3-Cd(1)-O(1)#4	94.6(4)	O(4)-Cd(1)-O(1)#4	86.7(2)		
N(2)-Cd(1)-O(3)	91.2(4)	N(5)#3-Cd(1)-O(3)	95.2(4)		
O(4)-Cd(1)-O(3)	52.0(4)	O(1)#4-Cd(1)-O(3)	120.6(4)		
N(2)-Cd(1)-O(2)#4	89.7(4)	N(5)#3-Cd(1)-O(2)#4	90.5(4)		
O(4)-Cd(1)-O(2)#4	121.7(4)	O(3)-Cd(1)-O(2)#4	173.8(3)		
Symmetry codes: #1 x,-y-1/2,z-1/2 #2 x+1/2,-y+2,z #3 x-1/2,-y+2,z					
#4 x,-y-1/2,z+1/2					
Compound 2					
Zn(1)-O(1)	1.938(3)	Zn(1)-N(2)	2.026(3)		
Zn(1)-N(5)#1	2.035(3)	Zn(1)-O(3)#2	2.049(7)		
N(5)-Zn(1)#3	2.035(3)	O(3)-Zn(1)#4	2.049(7)		
O(1)-Zn(1)-N(2)	111.09(16)	O(1)-Zn(1)-N(5)#1	112.99(14)		
N(2)-Zn(1)-N(5)#1	102.04(13)	O(1)-Zn(1)-O(3)#2	95.7(2)		
N(2)-Zn(1)-O(3)#2	136.5(3)	N(5)#1-Zn(1)-O(3)#2	97.8(2)		
C(1)-O(1)-Zn(1)	116.8(3)	C(29)-N(5)-Zn(1)#3	126.1(3)		
C(30)-N(5)-Zn(1)#3	127.6(3)	C(16)-N(2)-Zn(1)	127.3(3)		
C(14)-N(2)-Zn(1)	125.7(3)	C(13)-O(3)-Zn(1)#4	100.5(7)		
Symmetry codes: #1 x+1/2,-y-1/2,z+1/2 #2 x,-y+1,z-1/2 #3 x-1/2,-y-1/2,z-1/2					
#4 x,-y+1,z+1/2					
Compound 3					
N(2)-Zn(1)	2.010(4)	N(5)-Zn(1)#1	2.005(4)		
O(1)-Zn(1)	1.926(4)	O(4)-Zn(1)#2	1.968(3)		
Zn(1)-O(4)#4	1.968(3)	Zn(1)-N(5)#5	2.005(4)		
O(1)-Zn(1)-O(4)#4	96.68(14)	O(1)-Zn(1)-N(5)#5	109.05(17)		
O(4)#4-Zn(1)-N(5)#5	110.31(14)	O(1)-Zn(1)-N(2)	117.16(17)		
O(4)#4-Zn(1)-N(2)	107.05(14)	N(5)#5-Zn(1)-N(2)	114.94(16)		
Symmetry codes: #1 x-1/2,-y-3/2,-z+1 #2 x,-y,z-1/2 #3 -x,y,-z+1/2					
#4 x,-y,z+1/2 #5 x+1/2,-y-3/2,-z+1					

Table S2.Selected Bond Lengths (Å) and Angles (deg) for Compounds 1-3

Figure S1. Simulated (a), as-synthesized (b), immersed in water after 2 days (c), immersed in PBS solution (0.1M, PH=11) after 2 days (d), immersed in Fe^{3+} (0.01M) after 2 days (e), after releasing test for CR (f), and vacuuming at 80°C for 12 hours (g) powder X-ray diffraction patterns of **1**.

Figure S2. Simulated (a), as-synthesized (b), immersed in PBS solution (0.1M, PH=11) after 2 days (c), after releasing test for MO (d), and vacuuming at 80°C for 12 hours (e) powder X-ray diffraction patterns of **2**.

Figure S3. Simulated (a), as-synthesized (b), immersed in PBS solution (0.1M, PH=11) after 2 days (c) powder X-ray diffraction patterns of **3**.

Figure S4 The TGA diagrams of compounds 1-3.

Figure S5 UV-Vis spectra of $\mathrm{Fe}^{3+},$ compound 1 in aqueous solution

Figure S6. Adsorption isotherms for CR adsorption over 2h (compound 1), C_0 : the initial concentration of adsorbate, Q: the amount of CR adsorbed.

Figure S7. Adsorption isotherms for MO adsorption over 2h (compound 2), C_0 : the initial concentration of adsorbate, Q: the amount of MO adsorbed.

Figure S8. adsorption-desorption curve for CR (a. 5×10^{-5} CR b. 1@CR for 30 min c. desorption for 1 by methanol)

Figure S9. adsorption-desorption curve for MO (a. 5×10^{-5} CR b. **2**@CR for 30 min c. desorption for **2** by methanol)

Figure S10. ECL of 1@GCE in 0.1M PBS buffer (pH=11) and 25 mM luminol solution (ten cycles)

Figure S11. ECL of 2@GCE in 0.1M PBS buffer (pH=11) and 25 mM luminol solution (ten cycles)

Figure S12. ECL of 3@GCE in 0.1M PBS buffer (pH=11) and 25 mM luminol solution (ten cycles)