Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Publication in New Journal of Chemistry

Linker-assisted structuration of tunable uranium-based hybrid lamellar nanomaterials

Elisa Re¹, Xavier Le Goff¹, Guillaume Toquer,¹ Jérôme Maynadie^{*1}, Daniel Meyer¹

ICSM, Univ Montpellier, CEA, CNRS, ENSCM, Site de Marcoule, 30207 Bagnols/Cèze cedex, BP 17171, France

Corresponding author : jerome.maynadie@cea.fr

Electronic Supplementary Material

Fig. S1. Raman spectrum of uranium oxide nanohybrids obtained with 4,4'-stilbene dicarboxylic acid (633nm laser).

Fig. S2. Raman spectrum of uranium oxide nanohybrids obtained with 1,4-phenylene diacrylic acid (633nm laser)

Fig. S3. Thermogravimetric (black) and heat flow (red) analyses at a heating rate of 2°C/min for uranium oxide nanohybrids obtained with 4,4'-stilbene dicarboxylic acid. Black line shows the temperature of decomposition of the material.

Fig. S4. Thermogravimetric (black) and heat flow (red) analyses at a heating rate of 2°C/min for uranium oxide nanohybrids obtained with 1,4-phenylene diacrylic acid. Black line shows the temperature of decomposition of the material.

Table 1. TGA results of different ura	anium oxide nanohybrids

	Naphthalene-2,6- dicarboxylic acid	1,4-Phenylene diacrylic acid	4,4'-Stilbene dicarboxylic acid
Water loss %w exp	8%	10%	14%
Water loss %w theo	12%	12%	11%
Organic loss %w exp	43%	50%	43%
Organic loss %w theo	41%	49%	42%

Fig.S5. FT-IR spectra of uranium oxide nanohybrids (red) and 4,4'-stilbene dicarboxylic

acid (black)

Fig.S6. FT-IR spectra of uranium oxide nanohybrids (red) and 1,4-phenylene diacrylic

acid (black)

Fig S7. a) SEM image and b) TEM image of uranium based lamellar nanohybrids formed with 4,4'-stilbene dicarboxylic acid

Fig S8. a) SEM image and b) TEM image of uranium based lamellar nanohybrids formed

with 1,4-phenylene diacrylic acid

Fig.S9. SAXS spectrum of uranium oxide nanohybrids formed with 4,4'-stilbene dicarboxylic acid

Fig.S10. SAXS spectrum of uranium oxide nanohybrids formed with 1,4-phenylene diacrylic acid