Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Supporting information

Preparation of core-shell stationary phase by in-situ

polymerization of hydrophilic polymer on silica surface and its

chromatographic performance

Chao Fan^{a,b}, Hao Tang^c, Licheng Wang^a, Yijing Li^a, Xusheng Wang^a, Shuai Wang^{a,*},

Xiaojing Liang^{a,*}

^a Key Laboratory of Northwestern Plant Resources, CAS/Key Laboratory for Natural Medicines of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 73000, China

^b University of Chinese Academy of Sciences, Beijing 100049, China ^cDepartment of Pharmacy, Gansu Provincial Hospital, Lanzhou 730000, China

Fig. S1 IR spectra of Bare silica, NIPAM@Sil (0.1g) and NIPAM@Sil (0.4g). **Table S1** Surface and pore analysis of bare silica and NIPAM@Sil microspheres.

Stationary Phases	Surface Area (m^2/g)	Pore Volume (cm ³ /g)	Pore Diameter (Å)
Bare silica	370.72	0.66	63.85
NIPAM@Sil (0.4g)	289.36	0.45	62.05

Fig. S2 XPS of Bare silica, NIPAM@Sil (0.1g) and NIPAM@Sil (0.4g).

Fig. S3 Solid-state ¹³C NMR spectrum of NIPAM@Sil.

Fig. S4 Separation of test mixtures of 6-chlorouracil (1), thymidine (2); uridine (3); inosine (4); guanine (5); adenine (6); cytidine (7); cytosine (8) on 0.1g-NIPAM@Sil column. The chromatographic condition same as Fig 5.

palmatine hydrochloride

berberine hydrochloride

Fig. S5 The molecular structural of palmatine hydrochloride and berberine hydrochloride.

Fig. S6 Separation of test mixtures of sanguinarine (1); theophylline (2); colchicines (3); berberine hydrochloride (4); palmatine hydrochloride (5); jatrorrhizine (6) on 0.1g-NIPAM@Sil column. The chromatographic condition same as Fig 6.

Fig. S7 Separation of test mixtures of SDM (1); SM2 (2); SG (3) and SST (4) on 0.1g-NIPAM@Sil column. The chromatographic condition same as Fig. 7a.

Fig. S8 Separation of test mixtures of D-ribose (1); D-fructose (2); sucrose (3); lactulose (4) and triaccharide (5) on 0.1g-NIPAM@Sil column. The chromatographic condition same as Fig. 7b.

Fig. S9 The reproducibility of separation alkaloids on 0.4g-NIPAM@Sil column. sanguinarine (1), theophylline (2), colchicines (3), berberine hydrochloride (4), palmatine hydrochloride (5) and jatrorrhizine (6).Other conditions same as Fig.6

Fig. S10 The SEM images of 0.4g-NIPAM@Sil after using six months.