Supporting Information

Core-template-free Synthesis of Molecularly Ethane-bridged Hollow

Mesoporous Silica Spheres from Acid-hydrolyzed Precursor

Yangyi Sun,^{abc} Yijing Mao,^b Ningyu Di,^c Xiaolong Chen,^d Dongming Qi,^b Baoqing Shentu^{a*}

^aState Key Lab of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China. ^bKey Laboratory of Advanced Textile Materials and Manufacturing Technology and Engineering Research Center for Eco-Dyeing & Finishing of Textiles, Zhejiang Sci-Tech University, Hangzhou 310018, China. ^cZhejing Bofay Electric Corporation Limited, Zhejiang, Xiajing 314000, China. ^dNanoDrug Platform, Zhejiang California International NanoSystems Institute, Zhejiang University, Hangzhou 310058, China.

E-mail: shentu@zju.edu.cn

Figure S1. DLS size distribution of the composite micelles in TEA solution for 1h.

Figure S2. (a) DLS size distribution and (b) Zeta potential distributions of the typical MEB-HMSs. (Run 2 in Table 1)

Figure S3. (a) The photographs of the dispersions obtained with MEB-HMSs in H_2O ; (b-c) The photograph of the MEB-HMSs in one-pot. Typically, the reaction solution was composed of 200mL H_2O , 0.8 mL TEA, 0.24 g CTAB, and 4 mL Pluronic L-31 solution, while the acid-promoted pre-hydrolysis solution 15 mL EtOH, 5 mL HAc solution, and 0.9 mL BTEE and 0.9 mL TEOS. The content of the added pre-hydrolysis solution to reaction solution was 20 mL.

Figure S4. The evolutional morphologies of the prepared MEB-HMSs as a functional of reaction time: (a) 5, (b) 15, (c) 30, (d) 60 min.

Figure S5. DLS size distribution of the MEB-HMSs as a functional of reaction time with addition of TEA. The result show that the size of MEB-HMSs does not show significant change with different reaction time.

Figure S6. DLS size distribution of the unreacted emulsion drops as a functional of reaction time without addition of TEA. The results show that the average size of the unreacted emulsion drops is smaller than that of MEB-HMSs.

Figure S7. TEM images of the MEB-HMSs prepared with different CTAB amount: (a) 0, (b) 0.01, (c) 0.06, (d) 0.12, (e) 0.18, (f) 0.24 g.

Figure S8. N₂ sorption-desorption isotherm and the corresponding pore size distribution of the MEB-HMSs prepared of 0.06 g CTAB with different amount of Pluronic L-31: (a, a_1) 0, (b, b_1) 1.0, (c, c_1) 2.0, (d, d_1) 3.0 mL.

Analyzia	Atomic percent (molar ratio %)					
Anarysis	С	Si	0			
XPS	42.89	19.2	37.91			
EDX	28.65	18.55	52.79			

Table S1. Atomic compositions of the MEB-HMSs. (Run 2 in Table 1)

Table S2. Structure properties of MEB-HMSs and their drug-loading capacity

Samples	BTEE	TEOS	Pluronic	Particle	Shell	Particle	$\mathbf{S}_{\mathrm{BET}}$	Pore	Pore	Drug-loading
	/mL	/mL	L-31	size/	Thickness	size/ nm	(m ² /g)	volume	size	Capacity
			/mL	nm	/ nm	(DLS)		(cm ³ /g)	(nm)	(%)
				(TEM)	(TEM)					
HMSSs-1	0.90	0	1.0	202	24	207.6	817	1.21	2.8	15.4
HMSSs-2	0.60	0.3	1.0	183	26	262.7	790	1.18	3.1	29.6
HMSSs-3	0.45	0.45	1.0	178	36	200.1	687	1.07	3.2	34.5
HMSSs-4	0.45	0.45	2.0	193	40	210.2	694	1.31	3.3	35.9
HMSSs-5	0.45	0.45	3.0	192	44	207.0	708	1.28	3.5	33.0