Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Supporting Information

Pyrenoimidazole fused phenanthridine derivatives with intense red excimer fluorescence in solid-state

Shanmugam Karthik,^{¶, a} Joseph Ajantha,^{¶, b, c} Shanmugam Easwaramoorthi*^b and

Thirumanavelan Gandhi*a

^a Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu 632014 (India).

Email: velan.g@vit.ac.in

^b Inorganic & Physical Chemistry Laboratory, CSIR-Central Leather Research Institute,

Adyar, Chennai – 600020(India).

^c University of Madras, Chennai (India).

[¶] Contributed equally to the work

Table of Contents

Section	Title	Page. No.
1	Table S1 Photophysical properties of the compounds 5a-5f in different solvents	S2
2	Table S2 Fluorescence life time values of 5a-5f in thin film	S4
3	Table S3 Optimized geometries of 5a-5f calculated at B3LYP/6-31G*	S5
4	Table S4 Selected transitions obtained from TD-DFT calculations	S7
5	Fig. S1 UV–Visible absorption (solid line) and fluorescence (dotted line) spectra of PyFPs in chloroform	S11
6	Fig. S2 Calculated (blue) and experimental (black) absorption spectra of PyFPs 5a-5f in chloroform	S12
7	Fig. S3 Absorption and emission spectra of 5a-5f in different solvents	S13
8	Fig. S4 Absorption spectra of 5a-5f in thin film	S15
9	Fig. S5 Fluorescence lifetime decay profiles of 5a–5f in chloroform	S16
10	Fig. S6 Cyclic voltammogram of 5a-5f	S17
11	Fig. S7 Molecular energy level diagram and frontier orbitals of 5a-5f	S18
12	Fig. S8 a) Determined by DSC b) TGA curve of 5a-5f	S19
13	Copies of ¹ H, ¹³ C, ¹⁹ F NMR and HRMS of 4a-4f and 5a-5f	S20

Solvent	Absorption	Fluorescence	Stoke's Shift (cm ⁻¹)	$\Phi_{\rm fl}$
5a				
Toluene	392	421	1757	0.66
CHCl ₃	391	421	1757	0.69
EA	391	418	1651	0.64
THF	390	417	1660	0.74
DCM	392	421	1757	0.68
5b				
Toluene	392	421	1757	0.59
CHCl ₃	392	421	1757	0.54
EA	391	418	1652	0.58
THF	390	417	1660	0.70
DCM	392	421	1757	0.63
5c				
Toluene	393	422	1748	0.66
CHCl ₃	391	423	1934	0.63
EA	391	418	1652	0.59
THF	390	420	1831	0.69
DCM	391	423	1934	0.68
5d				
Toluene	394	423	1740	0.54
CHCl ₃	392	423	1869	0.63
EA	392	418	1587	0.53
THF	391	420	1766	0.64
DCM	392	423	1869	0.67
5e				
Toluene	392	446	3089	0.61
CHCl ₃	392	420	1701	0.65
EA	390	448	2965	0.64
THF	390	439	2862	0.58
DCM	392	419	1643	0.68
5f				
Toluene	394	428	2016	0.59
CHCl ₃	392	430	2254	0.56
EA	392	428	2145	0.60
THF	391	433	2640	0.66
DCM	391	436	1757	0.61

 Table S1 Photophysical properties of the compounds 5a-5f in different solvents

Compounds	$ au_1$	A ₁	τ_2	A ₂	$ au_{ m avg}$	χ^2
5a	1.89	19.97	9.33	80.03	7.84	1.12
5b	2.04	29.05	7.07	70.95	5.61	1.19
5c	2.44	28.61	8.67	71.39	6.89	1.11
5d	1.79	29.80	8.16	70.20	6.26	1.11
5e	2.05	28.26	8.01	71.74	6.32	1.13
5f	1.98	45.20	7.17	54.80	4.82	1.11

 Table S2 Fluorescence life time values of 5a-5f in thin film

 Table S3. Optimized geometries of 5a-5f calculated at B3LYP/6-31G*

|--|

Compound	Wave length (nm)	Osc. Strength	Major contributions
5a	373.71	0.1465	HOMO→LUMO (51%), HOMO→L+1 (37%)
	357.15	0.0849	H-1→LUMO (18%), HOMO→LUMO (27%), HOMO→L+1 (41%)
	320.69	0.226	H-1→LUMO (21%), HOMO→L+2 (25%), HOMO→L+3 (28%)
	309.15	0.2203	H-2→LUMO (12%), H-1→LUMO (30%), HOMO→L+3 (24%)
	300.33	0.1616	H-3→LUMO (10%), H-1→L+1 (59%)
	293.24	0.0942	H-2→LUMO (50%), H-1→L+1 (17%)
	291.03	0.0962	H-2→LUMO (12%), HOMO→L+3 (16%), HOMO→L+4 (51%)
	280.66	0.151	H-3→LUMO (40%), H-1→L+2 (32%)
	249.67	0.1425	H-3→L+1 (11%), H-3→L+2 (21%), H-2→L+2 (28%), HOMO→L+5 (10%)
	248.37	0.1649	H-3 \rightarrow L+2 (35%), H-1 \rightarrow L+3 (14%), H-6 \rightarrow LUMO (6%), H-6 \rightarrow L+1 (3%)

Compound	Wavelength (nm)	Osc. Strength	Major contributions
5b	372.61	0.1457	HOMO→LUMO (49%), HOMO→L+1 (39%)
	357.04	0.0803	H-1→LUMO (20%), HOMO→LUMO (28%), HOMO→L+1 (38%)
	321.71	0.3082	H-1→LUMO (28%), HOMO→L+2 (25%), HOMO→L+3 (19%)

	310.68	0.1707	H-3→LUMO (15%), H-1→LUMO (22%), HOMO→L+3 (35%)
	302.76	0.1545	H-2→LUMO (14%), H-1→L+1 (59%)
	294.39	0.1298	H-2→LUMO (59%), H-1→L+1 (17%)
	289.38	0.0992	HOMO→L+3 (15%), HOMO→L+4 (40%)
	281.86	0.1759	H-3→LUMO (32%), H-1→L+2 (19%), HOMO→L+4 (12%)
	246.01	0.1763	H-3→L+2 (13%), H-2→L+3 (10%), H- 1→L+4 (51%)

Compound	Wavelength (nm)	Osc. Strength	Major contributions
5c	375.47	0.1391	HOMO→LUMO (55%), HOMO→L+1 (32%)
	363.09	0.0548	H-1→LUMO (16%), HOMO→LUMO (23%), HOMO→L+1 (48%)
	326.76	0.2536	H-1→LUMO (19%), HOMO→L+2 (36%), HOMO→L+3 (15%)
	320.25	0.357	H-3→LUMO (11%), H-1→LUMO (28%), HOMO→L+3 (38%)
	308.73	0.1537	H-2→LUMO (20%), H-1→L+1 (59%)
	297.53	0.1915	H-2→LUMO (57%), H-1→L+1 (16%)
	286.52	0.2067	H-3→LUMO (24%), H-2→L+1 (16%), H- 1→L+2 (22%)
	271.23	0.1092	H-3→L+1 (60%)
	267.51	0.1342	H-3→LUMO (12%), H-2→L+1 (27%)
	258.95	0.1352	H-3→L+2 (46%), H-2→L+3 (17%)

254.15	0.1465	H-7→LUMO (15%), H-6→LUMO (11%), H- 4→L+1 (14%), H-1→L+4 (12%)

Compound	Wavelength (nm)	Osc. Strength	Major contributions
5d	376.88	0.1335	HOMO→LUMO (57%), HOMO→L+1 (32%)
	356.55	0.0637	H-1→LUMO (26%), HOMO→LUMO (21%), HOMO→L+1 (37%)
	327.16	0.2972	H-1→LUMO (40%), HOMO→L+2 (25%)
	310.26	0.1286	H-2→LUMO (17%), H-1→L+1 (55%)
	298.84	0.2885	H-2→LUMO (56%), H-1→L+1 (11%)
	286.37	0.238	H-3→LUMO (28%), H-2→L+1 (16%), H- 1→L+2 (24%)
	247.65	0.2582	H-3→L+2 (21%), H-1→L+4 (48%)

Compound	Wavelength (nm)	Osc. Strength	Major contributions
5e	368.84	0.172	HOMO→LUMO (61%), HOMO→L+1 (24%)
	325.67	0.3846	H-1→LUMO (48%), HOMO→L+1 (23%)
	301.50	0.1576	H-3→LUMO (23%), H-1→L+1 (61%)
	292.28	0.4632	H-2→LUMO (46%), HOMO→L+3 (19%)
	260.31	0.3127	H-3→L+1 (34%), H-2→L+2 (11%), H- 1→L+3 (11%), HOMO→L+5 (12%)
	248.19	0.0651	H-4→L+1 (18%), H-3→L+3 (13%), H- 1→L+4 (19%), HOMO→L+5 (12%)

Compound	Wavelength (nm)	Osc. Strength	Major contributions
5f	386.44	0.1071	HOMO→LUMO (64%), HOMO→L+1 (29%)
	357.90	0.1068	H-1→LUMO (13%), HOMO→LUMO (20%), HOMO→L+1 (51%)
	321.51	0.2396	H-1→LUMO (28%), HOMO→L+2 (27%), HOMO→L+3 (20%)
	303.97	0.2219	H-3→LUMO (17%), H-1→L+1 (39%), HOMO→L+3 (13%)
	295.61	0.1958	H-2→LUMO (63%), H-1→L+1 (12%)
	293.08	0.1137	HOMO→L+3 (19%), HOMO→L+4 (46%)
	282.52	0.1172	H-3→LUMO (38%), H-1→L+2 (39%)
	249.02	0.2419	H-3→L+2 (18%), H-1→L+3 (20%), HOMO→L+5 (14%)

Fig. S1 UV–Visible absorption (solid line) and fluorescence (dotted line) spectra of **PyFPs** in chloroform.

Fig. S2 Calculated (blue) and experimental (black) absorption spectra of **PyFPs 5a-5f** in chloroform. The calculations were carried at B3LYP/6-31G*level of theory.

S13

Fig. S3 Absorption and emission spectra of 5a-5f in different solvents

Fig. S4 Absorption spectra of 5a-5f in thin film.

excited at 371 nm and the decay profiles are monitored at respective λ_{em} .

Fig. S6 Cyclic voltammogram of pyrenoimidazoles derivatives **5a-5f** (10^{-3} M solutions, scan rate of 100 mVs⁻¹ vs Ag/Ag+) in 0.1 M solution of tetrabutylammonium hexafluorophosphate in acetonitrile solvent.

Fig. S7 Molecular energy level diagram and frontier orbitals of **5a-5f** calculated at B3LYP/6-31G* level of theory

Fig. S8 a) Determined by DSC, scan rate 10 °C min⁻¹, under a N₂ atmosphere. b) TGA curve of **5a-5f** with a heating rate of 10 °C min⁻¹ under an inert atmosphere

Copies of ¹H, ¹³C, ¹⁹F NMR and HRMS of **4a-4f** and **5a-5f**

¹³C NMR spectrum of **4a** in CDCl₃

¹H NMR spectrum of **5a** in CDCl₃

HRMS spectrum of 5a

¹³C NMR spectrum of **4b** in CDCl₃

¹³C NMR spectrum of **5b** in CDCl₃

HRMS spectrum of **5b**

¹³C NMR spectrum of **4c** in CDCl₃

¹H NMR spectrum of **5c** in CDCl₃

¹³C NMR spectrum of **5c** in CDCl₃

HRMS spectrum of 5c

¹H NMR spectrum of **4d** in CDCl₃

¹³C NMR spectrum of **4d** in CDCl₃

HRMS spectrum of 4d

 $^1\mathrm{H}$ NMR spectrum of $\mathbf{5d}$ in CDCl_3

¹³C NMR spectrum of **5d** in CDCl₃

HRMS spectrum of 5d

¹³C NMR spectrum of **4e** in CDCl₃

¹H NMR spectrum of **5e** in CDCl₃

¹³C NMR spectrum of **5e** in CDCl₃

HRMS spectrum of 5e

¹H NMR spectrum of **4f** in CDCl₃

¹³C NMR spectrum of **4f** in CDCl₃

 ^{19}F NMR spectrum of 4f in CDCl_3

HRMS spectrum of 4f

¹H NMR spectrum of **5**f

C NMR spectrum of $\mathbf{5f}$

¹⁹F NMR spectrum of **5**f

