Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Supporting Information

Facile Synthesis and Enhanced Photocatalytic Activity of Ag-SnS Nanocomposites

Chandini Behera¹, Surya Prakash Ghosh², Jyoti P. Kar², Saroj L Samal^{1*}

¹Department of Chemistry, NIT Rourkela, Rourkela-769008, Odisha, INDIA

² Department of Physics and Astronomy, NIT Rourkela, Rourkela-769008, Odisha, INDIA

Table S1. Composition of SnS and Ag-SnS (1:8, 1:6 and 1:4) nanocomposites obtained fromSEM-EDX study.

Loaded Sample	Composition (At. %) From EDX (FESEM)					
	Ag	Sn	S			
SnS	0	54.41	45.59			
Ag-SnS (1:4)	12.82	46.15	41.03			
Ag-SnS (1:6)	9.78	55.74	34.48			
Ag-SnS (1:8)	6.13	47.20	46.67			

Table S2. Photocurrent measurement analysis of SnS and Ag-SnS (1:8, 1:6 and 1:4) nanocomposites.

Sample	Iphoton/Idark (nA)
SnS	1.5
Ag-SnS (1:8)	1.6
Ag-SnS (1:6)	1.9
Ag-SnS (1:4)	4.8

Catalyst	Name of	Photo degradation condition			% of	Time	Refer
	pollutant				Degra		ence
		Dye	Catalyst	Irradiated Source	dation		
		Conc.	amount (mg				
			per ml)				
Ag/CdS	MB	10	30 mg/200 ml	500 W halogen	95.35	240	1
		mg/L		lamp		min	
Ag/Ag ₂ S/	2,4 -	50	30 mg/100 ml	Visible light	76	30 min	2
CuS	dichlorop	mg/L			And	and 3h	
	henol				100		
Ag–	MB	10	100 mg/100 ml	13 W fluorescent	81	50 min	3
TiO2/CNF		mg/L		lamp			
S							
Ag–ZnO	MO	10mg/L	2 mg/20 ml	visible light	100	5h	4
	MB	10mg/L		irradiation ($\lambda >$	100	4h	
	4-NP			500 nm).	100	6h	
		5mg/L					
Ag–ZnO	Methyl	5.0 x	30 mg/90 ml	3 x 6 W	95.8	40 min	5
	orange	10 ⁻⁵ M)		fluorescent Hg-			
				lamp			
Ag/ZnO@	Reactive	10	30 mg/50 ml	500 W xenon lamp	95.8%	120	6
C	black	mg/L					
	Rh-B	4 mg/L	1250 mg/1000	VLI	87.53	116	7
Ag-			ml				
ZnS-							
MWCNTs							
ZnO/Ag	Methyl	3 x 10 ⁻⁵	Required	projection lamp	99	120	8
	orange	mol/L	wt%/500 ml	(7748XHP 250 W,			
				Philips, λb532 nm)			
Ag-SnS	Congo red	10mg/L	10 mg/40 ml	250 W Hg lamp	100	100	This
(1:4)							work

Table S3. Details of various Ag based photocatalyst for the degradation of various dye.

Figure S1. (a) and (b) TEM images (c) HRTEM image of SnS nanocrystals.

Figure S2. FESEM images of Ag-SnS nanocomposites with varying ratio of Ag:SnS (a) 1:8, (b) 1:6 and (c) 1:4.

Figure S3. HAADF Elemental mapping of Ag-SnS nanocomposite with Ag:SnS ratio of 1:4.

Figure S4. (a) and (b) TEM images (c) HAADF - STEM image of decorated Ag-SnS nanocomposites with Ag: SnS ratio of 1:6.

Figure S5. UV – Vis study of Ag-SnS nanocomposites using $BaSO_4$ as reference. (a) Absorption spectra of Ag synthesized within 1 hour and (b) Absorption spectra of SnS and Ag–SnS nanocomposites.

Figure S6. Room-temperature photoluminescence spectra of SnS and Ag-SnS nanocomposites (1:8, 1:6 and 1:4).

Figure S7. (a - e) UV-Vis absorbance spectra of 10^{-4} M Congo red dye solution at different irradiation time without catalyst and using 10 mg of Ag nano, SnS and Ag-SnS (1:8, 1:6) catalysts.

Figure S8. PXRD pattern of Ag-SnS nanocomposite (1:4) before catalysis process (bottom) and after five catalytic cycles (top).

Figure S9. Nitrogen adsorption–desorption isotherms of Ag-SnS (1:4) nanocomposite before and after nine cycles of dye degradation.

Figure S10. FESEM images of Ag-SnS (1:4) nanocomposite and elemental mapping after nine cycles of photo degradation of dye.

Figure S11. COD percentage at different time interval during the photocatalytic degradation of Congo red dye using Ag-SnS (1:4) nanocomposite.

Figure S12. Schematic illustration of the light induced charge separation mechanism in Ag-SnS before and after contact.

References.

- Y. Liua, M. Chic, H. Donga, H. Jiaa, B. Xua and Z. Zhanga, *Appl. Surf. Sci.*, 2014, 313, 558–562.
- Y. Shi, Y. Chen, G. Tian, L. Wang, Y. Xiao and H. Fu, *ChemCatChem*, 2015, 7, 1684 – 1690.
- 3. C. H. Kima, B. H. Kima and K. S. Yanga, Synth. Met., 2011, 161, 1068–1072.
- S. A. Ansari, M. M. Khan, M. O. Ansari, J. Lee and M. H. Cho, J. Phys. Chem.C, 2013, 117, 27023–27030.
- C. Chen, Y. Zheng, Y. Zhan, X. Lin, Q. Zheng and K. Wei, *Dalton Trans.*, 2011, 40, 9566.
- X. Zhao, S. Su, G. Wu, C. Li, Z. Qin, X. Lou and J. Zhou, *Appl. Surf. Sci.*, 2017, 406, 254-264.
- 7. E. Baghban and Y. A. Mehrizad, J. Molecular Liquids, 2018, 255, 102 112.
- R. Saravanan, N. Karthikeyan, V. K. Gupta, E. Thirumal, P. Thangadurai, V. Narayanan and A. Stephen, *Mater. Sci. Eng.C*, 2013, 33, 2235–2244.