Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Design, Synthesis, and Biological Evaluation of Novel Nicotinamide Derivatives as Potential Histone

Deacetylase-3 Inhibitors.

Mohamed M.S. Hamoud,^{a,#} Sravani Pulya,^{b,#} Nermine A. Osman,^a Yamini Bobde,^b Abdalla E. A. Hassan,^{c,d} Hanan A. Abdel-Fattah,^a Balaram Ghosh,^{b,*} Amany M. Ghanim.^{a,*}

^a Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt.
 ^b Department of Pharmacy, BITS-Pilani, Hyderabad Campus, Shamirpet, Hyderabad, India, 500078.
 ^c Applied Nucleic Acids Research Center, Zagazig University, Egypt.
 ^d Department of Chemistry, Faculty of Science, Zagazig University, Zagazig 44519, Egypt.

Equal contribution, * Corresponding authors: Amany M Ghanim; email ID; amanyghanim@yahoo.com or amanygh@zu.edu.eg and Balaram Ghosh; email ID: balaram@hyderabad.bits-pilani.ac.in

In vitro antiproliferative assay

Fig. S1: Anticancer activity of the synthesized compounds in murine melanoma cells (B16F10). Cells were treated with compounds at 100 μ M and 10 μ M in triplicate for 72 hours. Cell viability was measured by MTT reagent. Data represents mean \pm SD (n=2).

Fig. S2: Anticancer activity of the synthesized compounds in breast cancer cell line (MCF-7). Cells were treated with compounds at 100 μ M and 10 μ M in triplicate for 72 hours. Cell viability was measured by MTT reagent. Data represents mean \pm SD (n=2).

Fig. S3: Anticancer activity of the synthesized compounds in lung cancer cell line (A549). Cells were treated with compounds at 100 μ M and 10 μ M in triplicate for 72 hours. Cell viability was measured by MTT reagent. Data represents mean \pm SD (n=2).

Supplementary material for ¹H NMR, ¹³C NMR for target compounds

Code	Log p	M.WT	nON HBA	nOHNH HBD	LIPINSK'S VIOLATION	TPSA	%ABS	VOLUMES	NROTB
6a	2.75	344.37	6	2	0	83.45	80.21	308.74	5
6b	3.20	358.40	6	2	0	83.45	80.21	325.30	5
6c	2.66	389.37	9	2	0	129.28	64.40	332.07	6
6d	3.56	423.27	6	2	0	83.45	80.21	326.62	5
6e	3.43	378.82	6	2	0	83.45	80.21	322.27	5
6f	3.19	390.47	6	2	0	83.45	80.21	343.43	6
6g	2.81	374.40	7	2	0	92.69	77.02	334.28	6
6h	2.38	434.45	9	2	0	111.15	70.65	385.37	8
6 i	2.25	360.37	7	3	0	103.68	73.23	316.75	5
6j	2.09	390.40	8	3	0	112.91	70.05	342.30	6
6k	2.79	404.43	8	2	0	101.92	73.84	359.83	7
61	2.85	387.44	7	2	0	86.69	79.09	354.64	6
6m	2.70	419.40	10	2	0	138.51	61.21	357.62	7
6n	2.30	390.40	8	3	0	112.91	70.05	342.30	6
60	2.51	369.38	7	2	0	107.24	72.00	325.60	5
6р	2.90	383.41	7	3	0	99.24	74.76	337.71	5
6q	2.01	334.33	7	2	0	96.59	75.68	290.30	5
6r	2.65	350.40	6	2	0	83.45	80.21	299.45	5
6s	2.92	362.36	6	2	0	83.45	80.21	313.67	5

Table 1: Data from Molinspiration server illustrate lipinisk's rules of fives:

Note. MWt = molecular weight; LogP = octanol/water partition coefficient; nOHNH = number of hydrogen bond donors; nON = number of hydrogen bond acceptors; nRotB = number of rotatable bonds; tPSA, topological polar surface area.

According to Lipinski's rule of five, compound is more likely to be easily absorbed if log P <5, M.WT <500, nON HBA <10, nOHNH HBD <5 and NROTB <10. The bioavailability is acceptable for a drug with a TPSA value below 140-150 $Å^2$ and NROTB less than or equal to 10.

The values of TPSA are used to calculate the percentage of oral absorption %ABS using the following equation:

%ABS= 109 - 0.345 TPSA

Table 2: Data from Molsoft software represent drug-likeness score and solubility

code	S (mg/kg) (drug H₂O solubility)	Drug-likeness model score
6a	4.82	0.91
6b	1.76	0.88
6c	3.38	-0.11
6d	0.42	1.03
6e	0.58	1.37
6f	0.52	0.85
6g	2.88	0.84
6h	9.02	1.03
6i	7.53	1.35
6j	6.47	0.78
6k	5.01	0.94
61	2.54	0.63
6m	1.00	-0.14
6n	13.84	1.06
60	1.32	0.71
6р	0.66	0.24
6q	34.90	1.15
6r	10.79	1.25
6s	1.54	1.20

code	e Caco2	MDCK	HIA	BBB	PPB
6a	21.49	21.30	94.32	0.03	98.24
6b	21.62	3.15	94.47	0.04	97.73
6c	20.96	19.65	92.52	0.06	97.07
6d	21.21	0.055	95.55	0.06	96.01
6e	20.95	2.38	95.06	0.05	92.67
6f	21.62	2.95	95.16	0.02	91.86
6g	21.97	12.44	94.47	0.02	93.45
6h	25.11	3.65	95.17	0.03	86.19
6i	21.13	25.16	91.46	0.05	91.98
6j	21.08	8.96	91.61	0.04	87.72
6k	23.40	15.20	94.77	0.02	90.75
61	22.74	2.45	94.71	0.03	94.88
6m	19.15	7.19	91.05	0.05	97.07
6n	21.03	11.25	91.60	0.03	85.86
60	21.14	14.38	94.96	0.01	98.43
6р	21.25	2.60	92.66	0.04	82.10
6q	21.10	17.28	94.14	0.01	90.84
6r	4.29	20.03	95.17	0.01	89.92
6s	21.44	8.78	94.33	0.03	92.71

Table 3: Results from Pre-ADMET software demonstrate the cell permeability and absorption bioavailability: