Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

> Ultrastable Conductive Microporous Covalent Triazine Frameworks Based on Pyrene Moieties Provide High-Performance CO₂ Uptake and Supercapacitance

> Mohamed Gamal Mohamed, ^{a,b}Ahmed F. M. EL-Mahdy, ^{a,b} Yasuno Takashi,^a and Shiao-Wei Kuo^{a,c}*

^aDepartment of Materials and Optoelectronic Science, Center of Crystal Research, National Sun

Yat-Sen University, Kaohsiung 80424, Taiwan

^bChemistry Department, Faculty of Science, Assiut University, Assiut 71516, Egypt

^cDepartment of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, 807, Taiwan

*To whom correspondence should be addressed

Email: kuosw@faculty.nsysu.edu.tw

Figure S1. FT-IR profile of Pyrene-CTF-20.

Figure S2. ¹³C CP/MAS NMR spectra of (a) TBrPy, (b) TCNPy, (c) Pyrene-CTF-10 and (d) Pyrene-CTF-20.

Figure S3. Coulombic efficiency vs Current density (Ag⁻¹) of Pyrene-CTF-10 and Pyrene-CTF-20.

Material	Surface area (m^2g^{-1})	Capacitance	Ref.
Porous carbon derived from MOF	1276	270 F/g @ 2 Ag ⁻¹	S1
Nitrogen-doped graphitic carbon	1327	255 F/g@ 2 Ag ⁻¹	S2
Phenolic formaldehyde resin	1256	261 F/g @ 0.05 Ag ⁻¹	S3
Amorphous Terephthalonitrile derived	1681	298 F/g @ 0.2 Ag ⁻¹	S4
nitrogen-rich framework			
Triazine containing porous organic	317	151.3 F/g @ 0.1Ag ⁻¹	S5
Carbonization of Triazine-based covalent	2003	278 F/g @ 1.0 Ag ⁻¹	S6
organic polymer			
Triazine N doped carbon derivatives	1268	325 F/g @ 0.5 Ag ⁻¹	S7
Nitrogen-enriched Nanoporous Polytriazine	838	656 F/g @ 1.0 Ag ⁻¹	S 8
Covalent Traizine framework	651	354 F/g @ 2 mV/s	S9
Covalent Triazine-Based Framework	3600	380 F/g @ 0.2 Ag ⁻¹	S10
Covalent triazine-based frameworks	29	122.6 F/g @ 1.0mV/s	S11
Porous triazine-based frameworks	2482	151.3 F/g @ 0.1 Ag ⁻¹	S12
Benzimidazole grafted graphene		410 F/g @ 0.4 Ag ⁻¹	S13
Nitrogen-enriched porous carbon sphere		410 F/g @ 1 Ag ⁻¹	S14
Pyrene-based covalent triazine frameworks	1019	500 F/g @ 0.5mV/s	This
		-	work

Table S1. Performance comparison of various CTF and porous carbons materials.

Samples	CO ₂ uptake (mmole/g)		Ref	
	298 K	273 K	-	
Pyrene-CTF-10	2.82	5.10	This work	
Pyrene-CTF-20	2.54	3.43	This work	
CTF-Ph	-	3.05	S15	
CTF-20-400	-	3.48	S16	
CTF-5-500	-	3.02	S16	
TPC-1	-	4.90	S17	
cCTF-400	-	2.86	S18	
cCTF-500	-	3.022	S18	
CTF-1-600	-	3.83	S19	

Table S2. Performance comparison of Pyrene-CTFs and other reported CTFs for CO_2 uptake.

References

S1. J. Tang, R. R. Salunkhe, J. Liu, N. L. Torad, M. Imura, S. Furukawa and Y. Yamauchi, Thermal Conversion of Core–Shell Metal–Organic Frameworks: A New Method for Selectively Functionalized Nanoporous Hybrid Carbon. *J. Am. Chem. Soc.*, 2015, **137**, 1572-1580.

S2. D. Puthusseri, V. Aravindan, S. Madhavi and S. Ogale, 3D micro-porous conducting carbon beehive by single step polymer carbonization for high performance supercapacitors: the magic of in situ porogen formation. *Energy. Environ. Sci.*, 2014, **7**, 728-735.

S3. J. Zhang, W. Zhang, M. Han and J. Pang, One pot synthesis of nitrogen-doped hierarchical porous carbon derived from phenolic formaldehyde resin with sodium citrate as activation agent for supercapacitors. *J. Mater. Sci.: Mater. Electronics*, 2018, **29**, 4639-4648.

S4. L. Hao, B. Luo, X. Li, M. Jin, Y. Fang, Z. Tang, Y. Jia, M. Liang, A. Thomas, J. Yang and L. Zhi, L. Terephthalonitrile-derived nitrogen-rich networks for high performance supercapacitors. *Energy Environ. Sci.*, 2012, **5**, 9747-9751.

S5. L.Xu, R. Liu, F. Wang, S. Yan, X. Shi and J. Yang, Preparation of triazine containing porous organic polymer for high performance supercapacitor applications. *RSC Adv.*, 2019, **9**, 1586-1590.

S6. M. Kim, P. Puthiaraj, Y. Qian, Y. Kim, S. Jang, S. Hwang, E. Na, W. S. Ahn and S. E. Shim, High performance carbon supercapacitor electrodes derived from a triazine-based covalent organic polymer with regular porosity. *Electrochim. Acta*, 2018, **284**, 98-107.

S7. L. Peng, Q. Guo, Z. Ai, Y. Zhao, Y. Liu and D. Wei, Nitrogen doped carbons derived from graphene aerogel templated triazine-based conjugated microporous polymers for high-performance supercapacitors. *Frontiers Chem.*, 2019, **7**, 142.

S8. M. Chaudhary, A. K. Nayak, R. Muhammad, D. Pradhan and P. Mohanty, Nitrogen-enriched nanoporous polytriazine for high-performance supercapacitor application. *ACS Sustainable Chem. Eng.*, 2018, **6**, 5895-5902.

S9. P. Bhanja, K. Bhunia, S. K. Das, D. Pradhan, R. Kimura, Y. Hijikata, S. Irle and A. Bhaumik, A new triazine-based covalent organic framework for high-performance capacitive energy storage. *ChemSusChem*, 2017, **10**, 921-929.

S10. Y. Li, S. Zheng, X. Liu, P. Li, L. Sun, R. Yang, S. Wang, Z. S. Wu, X. Bao and W. Q. Deng, Conductive microporous covalent triazine-based framework for high-performance electrochemical capacitive energy storage. *Angew. Chem. Int. Ed.*, 2018, **57**, 7992-7996.

S11. D. Liu, X. Ning, Y. Hong, Y. Li, Q. Bian and J. Zhang, Covalent triazine-based frameworks as electrodes for high-performance membrane capacitive deionization. *Electrochimica Acta*, 2019, **296**, 327-334.

S12. L. Hao, J. Ning, B. Luo, B. Wang, Y. Zhang, Z. Tang, J. Yang, A. Thomas and L. Zhi, Structural evolution of 2D microporous covalent triazine-based framework toward the study of high-performance supercapacitors. *J. Am. Chem. Soc.*, 2015, **137**, 219-225.

S13. W. Ai, W. Zhou, Z. Du, Y. Du, H. Zhang, X. Jia, L. Xie, M. Yi, T. Yu and W. Huang, Benzoxazole and benzimidazole heterocycle-grafted graphene for high-performance supercapacitor electrodes. *J. Mater. Chem.*, 2012, **22**, 23439-23446.

S14. N. P. Wickramaratne, J. Xu, M.Wang, L. Zhu, L. Dai and M. Jaroniec, Nitrogen Enriched Porous Carbon Spheres: Attractive Materials for Supercapacitor Electrodes and CO₂ Adsorption. *Chem. Mater.*, 2014, **26**, 2820-2828.

S15. G. Tuci, M. Pilaski, H. Ba, A. Rossin, L. Luconi, S. Caporali, C. Pham-Huu, R. Palkovits,G. Giambastiani, Unraveling surface basicity and bulk morphology relationship on covalent

triazine frameworks with unique catalytic and gas adsorption properties. *Adv. Funct. Mater.* 2017, **27**, 1605672.

S16. G. Wang, K. Leus, S. Zhao, P. V. D. Voort, Newly designed covalent triazine framework based on novel N-heteroaromatic building blocks for efficient CO₂ and H₂ capture and storage. *ACS Appl. Mater. Interfaces* 2018, **10**, 1244–1249.

S17. X. M. Hu, Q. Chen, Y. C. Zhao, B. W. Laursen, B. H. Han, Straightforward synthesis of a triazine-based porous carbon with high gas-uptake capacities. *J. Mater. Chem. A* 2014, **2**, 14201–14208.

S18. Y. J. Lee, S. N. Naidu, A. Coskun, Chemically activated covalent triazine frameworks with enhanced textural properties for high capacity gas storage. *ACS Appl. Mater. Interfaces* 2017, **9**, 30679–30685.

S19. Y. F. Zhao, K. X. Yao, B. Y. Teng, T. Zhang, Y. Han, A perfluorinated covalent triazine-based framework for highly selective and water-tolerant CO₂ capture. *Energy Environ. Sci.* 2013, 6, 3684–3692.