Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Electronic Supplementary Information for

Sterically Enriched Bulky 1,3-Bis(*N*,*N*'-Aralkyl)Benzimidazolium based Pd-PEPPSI Complexes for Buchwald-Hartwig Amination Reactions

Motakatla Venkata Krishna Reddy, Gokanapalli Anusha and Peddiahgari Vasu Govardhana Reddy*

Department of Chemistry, Yogi Vemana University, Kadapa – 516005, Andhra Pradesh, India

*Corresponding Author Phone: +91-856225410; fax: +91-8562225419

E-mail: pvgr@yogivemanauniversity.ac.in

Table of Contents

I.	General Scheme for the preparation of benzimidazolium Pd- PEPPSI complexes C1-C6	 S2
II.	Table 1. Preparation of Pd-PEPPSI complexes C1-C6	 S2-S3
III.	Characteristic data of Pd-PEPPSI complexes C1-C6	 S4-S7
IV.	Characteristic data of compounds 6a - 6cb	 S7-S16
V.	¹ H and ¹³ C NMR Spectra	 S17-S45
VI.	X-ray crystallography data for Pd-PEPPSI complex, C6	 S46-S66
VII.	X-ray crystallography structure for Pd-PEPPSI complex, C6	 S66-S68
VIII.	References	 S68-S69

I. General Scheme for the preparation of benzimidazolium Pd-PEPPSI complexes C1-C6

Reagents and conditions for benzimidazolium chlorides: (i) *o*-phenylenediamine (1.0 mmol), aralkyl halide (2.0 mmol), NEt₃ (2.0 mmol), acetonitrile (10 mL), reflux, 3h; (ii) HC(OEt)₃ (1.0 mmol), conc. HCl (1.0 mmol), 120 °C, 3h.

Entry	Benzimidazolium	Pd-PEPPSI Complex	Time (h)	Yield ^a (%)
	chloride			
1	F N CI ^O	F N CI	12	63
	\bigcirc	C) C1		

d-N

C3

^{iPr}, ^{iPr}, ^{CI}, ^{CI}

Reaction conditions: benzimidazolium chloride (1.0 mmol), $PdCl_2$ (1.0 mmol), K_2CO_3 (3.0 mmol), 3-chloro pyridine (4 mL), 80 °C. Non-inert atmosphere. ^aIsolated yield.

III. Characteristic data of Pd-PEPPSI complexes C1-C6

C1: [1,3-Dibenzyl)-5-fluorobenzimidazol-2-ylidene]-N-(3-chloropyridine)dichloropalladium(II)

Yellow solid (381 mg, 63%); m.p. 146-148 °C; vmax (KBr)/cm⁻¹: 3095 (Ar-C-H), 2911 (Ali-C-H), 1714 (-C=N), 1552 (Ar-C=C), 1410 (Pd-Ccarbene); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 9.05 (d, J = 2.8 Hz, 1H, Ar-H), 8.95 (d, J = 7.2 Hz, 1H, Ar-H), 7.61 (t, J = 6.8 Hz, 6H, Ar-H), 7.41 (d, J = 4.8 Hz, 4H, Ar-H), 7.40 (s, 1H, Ar-H), 7.38-7.30 (m, 2H, Ar-H), 6.81 (d, J = 9.2 Hz, 2H, Ar-H), 6.22 (d, J = 9.6 Hz, 4H, Ar-C<u>H</u>₂-); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 158.08 (d, J = 1.4 Hz, Ar-C), 156.36 (Ar-C), 150.40 (Ar-C), 149.31 (Ar-C), 138.34 (Ar-C), 134.69 (Ar-C), 134.45 (Ar-C), 132.80 (Ar-C), 131.10 (Ar-C), 129.17 (Ar-C), 129.11 (Ar-C), 128.60 (Ar-C), 128.53 (Ar-C), 128.07 (Ar-C), 128.03 (Ar-C), 99.13 (Ar-C), 98.85 (Ar-C), 53.57 (Ar-CH₂); HRMS (ESI-TOF) calcd for C₂₆H₂₂Cl₃FN₃Pd [M+H]⁺ m/z = 605.9898, found 605.9905.

C2: [Bis-1,3-(2,4,6-trimethylbenzyl)benzimidazol-2-ylidene]-*N*-(3-chloropyridine)dichloropalladium(II)

Yellow solid (477 mg, 71%); m.p. 140-142 °C; vmax (KBr)/cm⁻¹: 3020 (Ar-C-H), 2950 (Ali-C-H), 1699 (-C=N), 1533 (Ar-C=C), 1406 (Pd-Ccarbene); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.93 (s, 1H, Ar-H), 8.88 (d, J = 5.6 Hz, 1H, Ar-H), 7.77 (d, J = 8.4 Hz, 1H, Ar-H), 7.32 (t, J = 6.0 Hz, 1H, Ar-H), 6.91 (s, 4H, Ar-H), 6.87-6.84 (m, 2H, Ar-H), 6.50 (d, J = 3.2 Hz, 2H, Ar-H), 6.20 (s, 4H, Ar-C<u>H</u>₂), 2.32 (s, 18H, Ar-C<u>H</u>₃); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 162.96 (Ar-C), 150.37 (Ar-C), 149.28 (Ar-C), 138.83 (Ar-C), 138.60 (Ar-C), 138.14 (Ar-C), 134.83 (Ar-C), 132.63 (Ar-C), 129.74 (Ar-C), 127.69 (Ar-C), 124.87 (Ar-C), 122.94 (Ar-C), 111.26 (Ar-C), 50.24 (Ar-CH₂), 21.17 (Ar-CH₃), 20.94 (Ar-CH₃); HRMS (ESI-TOF) calcd for C₃₂H₃₅Cl₃N₃Pd [M+H]⁺ m/z = 672.0931, found 672.0937.

C3: [Bis-1,3-(2,4,6-trimethylbenzyl)-5-methylbenzimidazol-2-ylidene]-*N*-(3-chloropyridine)dichloropalladium(II)

Yellow solid (583 mg, 85%); m.p. 150-152 °C; vmax (KBr)/cm⁻¹ : 3065 (Ar-C-H), 2918 (Ali-C-H), 1700 (-C=N), 1561 (Ar-C=C), 1407 (Pd-Ccarbene); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.89 (s, 1H, Ar-H), 8.85 (d, J = 5.6 Hz, 1H, Ar-H), 7.76 (d, J = 8.4 Hz, 1H, Ar-H), 7.31 (t, J = 8.0 Hz, 1H, Ar-H), 6.92 (d, J = 4.4 Hz, 4H, Ar-H), 6.68 (d, J = 8.4 Hz, 1H, Ar-H), 6.34 (t, J = 8.0 Hz, 2H, Ar-H), 6.17 (s, 2H, Ar-C<u>H</u>₂), 6.11 (s, 2H, Ar-C<u>H</u>₂), 2.32 (s, 18H, Ar-C<u>H</u>₃), 2.14 (s, 3H, Ar-C<u>H</u>₃); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 161.87 (Ar-C), 150.36 (Ar-C), 149.26 (Ar-C), 138.86 (Ar-C), 138.54 (Ar-C), 138.47 (Ar-C), 138.08 (Ar-C), 124.83 (Ar-C), 124.26 (Ar-C), 111.19 (Ar-C), 110.80 (Ar-C), 50.23 (Ar-CH₂), 49.72 (Ar-CH₂), 21.54 (Ar-CH₃), 21.18 (Ar-CH₃), 21.15 (Ar-CH₃), 20.99 (Ar-CH₃), 20.91 (Ar-CH₃); HRMS (ESI-TOF) calcd for C₃₃H₃₇Cl₃N₃Pd [M+H]⁺ m/z = 686.1088, found 686.1095.

C4: [1,3-Dibenzyl)-5,6-dimethylbenzimidazol-2-ylidene]-*N*-(3-chloropyridine)dichloropalladi-

um(II)

Yellow solid (425 mg, 69%); m.p. 164-166 °C; vmax (KBr)/cm⁻¹ : 3076 (Ar-C-H), 2921 (Ali-C-H), 1691 (-C=N), 1558 (Ar-C=C), 1414 (Pd-Ccarbene); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 9.02 (d, J = 2.8 Hz, 1H, Ar-H), 8.92 (d, J = 5.6 Hz, 1H, Ar-H), 7.58 (d, J = 8.0 Hz, 4H, Ar-H), 7.38 (t, J = 7.6 Hz, 5H, Ar-H), 7.32-7.24 (m, 2H, Ar-H), 6.85 (s, 3H, Ar-H), 6.16 (s, 4H, Ar-C<u>H</u>₂), 2.16 (s, 6H, Ar-C<u>H</u>₃); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 161.21 (Ar-C), 151.77 (Ar-C), 150.39 (Ar-C), 149.32 (Ar-C), 138.19 (Ar-C), 135.34 (Ar-C), 133.22 (Ar-C), 132.70 (Ar-C), 128.95 (Ar-C), 128.20 (Ar-C), 127.95 (Ar-C), 124.92 (Ar-C), 111.72 (Ar-C), 52.99 (Ar-CH₂), 20.32 (Ar-CH₃); HRMS (ESI-TOF) calcd for C₂₈H₂₇Cl₃N₃Pd [M+H]⁺ m/z = 616.0305, found 616.0309.

C5: [Bis-1,3-(2,4,6-trimethylbenzyl)-5,6-dimethylbenzimidazol-2-ylidene]-*N*-(3-chloropyridine) dichloropalladium(II)

Yellow solid (574 mg, 82%); m.p. 163-164 °C; vmax (KBr)/cm⁻¹ : 3076 (Ar-C-H), 2926 (Ali-C-H), 1693 (-C=N), 1569 (Ar-C=C), 1409 (Pd-Ccarbene); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.86 (d, J = 2.4 Hz, 1H, Ar-H), 8.82 (dd, J = 1.2 Hz and 1.6 Hz, 1H, Ar-H), 7.76 (qd, J = 1.2 Hz and 1.2 Hz, 1H, Ar-H), 7.30 (q, J = 5.6 Hz and 5.6 Hz, 1H, Ar-H), 6.90 (s, 4H, Ar-H), 6.23 (s, 2H, Ar-H), 6.09 (s, 4H, Ar-C<u>H₂</u>), 2.31 (S, 18H, Ar-C<u>H₃</u>), 2.01 (s, 6H, Ar-C<u>H₃</u>); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 160.51 (Ar-C), 150.36 (Ar-C), 149.26 (Ar-C), 138.91 (Ar-C), 138.43 (Ar-C), 138.00 (Ar-C), 133.47 (Ar-C), 132.53 (Ar-C), 131.82 (Ar-C), 129.57 (Ar-C), 128.04 (Ar-C), 124.77 (Ar-C), 111.46 (Ar-C), 49.78 (Ar-<u>C</u>H₂), 21.13 (Ar-<u>C</u>H₃), 20.93 (Ar-<u>C</u>H₃), 20.38 (Ar-<u>C</u>H₃); HRMS (ESI-TOF) calcd for C₃₄H₃₉Cl₃N₃Pd [M+H]⁺ m/z = 700.1244, found 700.1251.

C6: [Bis-1,3-(2,4,6-triisopropylbenzyl)-5,6-dimethylbenzimidazol-2-ylidene]-*N*-(3-Chloropyridine)dichloropalladium(II)

Yellow solid (686 mg, 79%); m.p. 172-174 °C; vmax (KBr)/cm⁻¹: 3080 (Ar-C-H), 2957 (Ali-C-H), 1695 (-C=N), 1550 (Ar-C=C), 1409 (Pd-Ccarbene); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 9.18 (s, 1H, Ar-H), 9.10 (d, J = 3.6 Hz, 1H, Ar-H), 7.82 (d, J = 6.4 Hz, 1H, Ar-H), 7.40 (t, J = 4.4 Hz, 1H, Ar-H), 7.11 (s, 4H, Ar-H), 6.35 (s, 4H, Ar-H), 5.75 (s, 2H, Ar-H), 3.50-3.44 (m, 4H, Ar-CH(CH₃)₂), 3.01-2.93 (m, 2H, Ar-CH(CH₃)₂), 1.85 (s, 6H, Ar-CH₃), 1.32 (d, J = 5.6 Hz, 12H, Ar-CH(CH₃)₂), 1.12 (s, 24H, Ar-CH(CH₃)₂); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 160.50 (Ar-C), 150.49 (Ar-C), 150.30 (Ar-C), 149.58 (Ar-C), 149.46 (Ar-C), 138.12 (Ar-C), 133.76 (Ar-C), 132.77 (Ar-C), 130.79 (Ar-C), 125.47 (Ar-C), 124.98 (Ar-C), 121.56 (Ar-C), 112.31 (Ar-C), 48.73 (Ar-CH₂), 34.52 (Ar-CH(CH₃)₂),

29.70 (Ar-<u>C</u>H(CH₃)₂), 24.24 (Ar-CH(<u>C</u>H₃)₂), 24.22 (Ar-CH(<u>C</u>H₃)₂), 19.88 (Ar-<u>C</u>H₃); HRMS (ESI-TOF) calcd for $C_{46}H_{63}Cl_3N_3Pd$ [M+H]⁺ m/z = 868.3122, found 868.3127.

IV. Characteristic data of compounds 6a - 6cb

N-Phenyl pyridin-3-amine (**6a**)¹

Pale brown solid (156 mg, 91%); m.p. 90-92 °C; vmax (KBr)/cm⁻¹: 3321 (Ar-NH-Ar), 3062 (Ar-C-H), 1634 (Ar-C=N), 1437 (Ar-C=C); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.37 (s, 1H, Ar-H), 8.16 (s, 1H, Ar-H), 7.41 (d, *J* = 8.4 Hz, 1H, Ar-H), 7.31 (t, *J* = 8.4 Hz, 2H, Ar-H), 7.18 (q, *J* = 4.8 Hz and 4.8 Hz, 1H, Ar-H), 7.09 (d, *J* = 7.6 Hz, 2H), 7.01 (t, *J* = 7.2 Hz, 1H), 5.814 (s, 1H, Ar-NH); ¹³C NMR (100 MHz, CDCl₃, δ ppm): 147.23 (Ar-C), 141.95 (Ar-C), 140.11 (Ar-C), 139.84 (Ar-C), 129.56 (Ar-C), 123.70 (Ar-C), 123.45 (Ar-C), 122.07 (Ar-C), 118.35 (Ar-C); HRMS (ESI-TOF) calcd for C₁₁H₁₁N₂ [M+H]⁺ m/z = 171.0922, found 171.0920.

N-p-Tolyl pyridin-3-amine (**6b**)¹

Pale brown solid (181 mg, 98%); m.p. 85-88 °C; vmax (KBr)/cm⁻¹: 3325 (Ar-NH-Ar), 3051 (Ar-C-H), 2972 (Ali-C-H), 1627 (Ar-C=N), 1425 (Ar-C=C); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.32 (s, 1H, Ar-H), 8.11 (s, 1H, Ar-H), 7.33 (d, *J* = 7.2 Hz, 1H, Ar-H), 7.14 - 7.10 (m, 3H, Ar-H), 7.01 (d, *J* = 8.4 Hz, 2H, Ar-H), 5.73 (s, 1H, Ar-NH), 2.31 (s, 3H, Ar-C<u>H</u>₃); ¹³C NMR (100 MHz, CDCl₃, δ ppm): 141.18 (Ar-C), 140.64 (Ar-C), 139.33 (Ar-C), 139.09 (Ar-C), 132.05 (Ar-C), 130.07 (Ar-C), 123.70 (Ar-C), 122.41 (Ar-C), 119.39 (Ar-C), 20.74 (Ar-<u>C</u>H₃); HRMS (ESI-TOF) calcd for C₁₂H₁₃N₂ [M+H]⁺ m/z = 185.1079, found 185.1081.

N-(4-(Trifluoromethoxy)phenyl)pyridin-3-amine (**6c**)¹

Colourless crystalline solid (235 mg, 92%); m. p. 93-95 °C; vmax

(KBr)/cm⁻¹: 3313 (Ar-NH-Ar), 3057 (Ar-C-H), 1614 (Ar-C=N), 1431 (Ar-C=C); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.38 (d, *J* = 2.8 Hz, 1H, Ar-H), 8.21 (dd, *J* = 0.8 Hz and 1.2 Hz, 1H, Ar-H), 7.42 (qd, *J* = 1.6 Hz and 1.2 Hz, 1H, Ar-H), 7.21 (q, *J* = 4.8 Hz and 4.8 Hz, 1H, Ar- H), 7.15 (d, *J* = 8.4 Hz, 2H), 7.07 - 7.04 (m, 2H, Ar-H), 5.94 (s, 1H, Ar-NH); ¹³C NMR (100 MHz, CDCl₃, δ ppm): 143.57 (Ar-C), 142.55 (Ar-C), 141.00 (Ar-C), 140.20 (Ar-C), 139.39 (Ar-C), 123.98 (d, *J* = 16.6 Hz, Ar-O<u>C</u>F₃), 122.53 (Ar-C), 121.84 (Ar-C), 119.29 (Ar-C), 118.86 (Ar-C); HRMS (ESI-TOF) calcd for $C_{12}H_{10}F_3N_2O$ [M+H]⁺ m/z = 255.0745, found 255.0737.

Colourless solid (198 mg, 83%); m. p. 85-87 °C; vmax (KBr)/cm⁻¹:

3317 (Ar-NH-Ar), 3042 (Ar-C-H), 1618 (Ar-C=N), 1429 (Ar-C=C); ¹H

N-(3-(Trifluoromethyl)phenyl)pyridin-3-amine (6d)

NMR (400 MHz, CDCl₃): δ (ppm) 8.35 (s, 1H, Ar-H), 8.18 (s, 1H, Ar-H), 7.39 (d, J = 8.0 Hz, 1H, Ar-H), 7.32 (t, J = 8.0 Hz, 1H, Ar-H), 7.15 (t, J = 8.4 Hz, 4H, Ar-H), 6.16 (s, 1H, Ar-NH); ¹³C NMR (100 MHz, CDCl₃, δ ppm): 143.04 (Ar-C), 141.04 (Ar-C), 132.49 (q, J = 35.4 Hz and 32.0 Hz, Ar-C), 130.08 (Ar-C), 128.00 (Ar-C), 125.29 (Ar-C), 124.79 (Ar-C), 122.58 (Ar-C), 120.27 (Ar-C), 119.87 (Ar-C), 118.05 (q, J = 3.7 Hz and 3.9 Hz, Ar-C), 113.91 (d, J = 3.9 Hz, Ar-C); HRMS (ESI-TOF) calcd for C₁₂H₁₀F₃N₂ (M+H)⁺ m/z = 239.0796, found 239.0793.

N-(4-(Trifluoromethyl)phenyl)pyridin-3-amine (6e)

Colorless solid (213 mg, 89%); m. p. 113-115 °C; *v*max (KBr)/cm⁻¹: 3328 (Ar-NH-Ar), 3057 (Ar-C-H), 1622 (Ar-C=N), 1431 (Ar-C=C); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.46 (s, 1H, Ar-H), 8.29 (d, *J* = 4.0 Hz, 1H, Ar-H), 7.52 (d, *J* = 8.4 Hz, 3H, Ar-H), 7.27 (t, *J* = 4 Hz, 1H, Ar-H)

S8

H), 7.080 (d, J = 8.4 Hz, 2H, Ar-H), 6.11 (s, 1H, Ar-NH); ¹³C NMR (100 MHz, CDCl₃, δ ppm): 145.76 (Ar-C), 143.77 (Ar-C), 142.01 (Ar-C), 138.02 (Ar-C), 126.96 (q, J = 3.7 Hz and 3.7 Hz, Ar-C), 126.05 (Ar-C), 123.89 (Ar-C), 123.05 (d, J = 5.6 Hz, Ar-C), 115.89 (Ar-C); HRMS (ESI-TOF) calcd for C₁₂H₁₀F₃N₂ (M+H)⁺ m/z = 239.0796, found 239.0793.

N-(4-Bromophenyl)pyridin-3-amine (6f)²

Pale black solid (219 mg, 88%); m. p. 108-110 °C; vmax (KBr)/cm⁻¹: 3331 (Ar-NH-Ar), 3049 (Ar-C-H), 1613 (Ar-C=N), 1426 (Ar-C=C), 653 (C-Br); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.37 (s, 1H, Ar-H), 8.20 (d, *J* = 4.0 Hz, 1H, Ar-H), 7.39 (d, *J* = 8.8 Hz, 3H, Ar-H), 7.20 (q, *J* = 4.8 Hz and 4.4 Hz, 1H, Ar-H), 6.96 (d, *J* = 8.8 Hz, 2H), 5.86 (s, 1H, Ar-NH); ¹³C NMR (100 MHz, CDCl₃, δ ppm): 142.27 (Ar-C), 140.75 (Ar-C), 140.27 (Ar-C), 139.53 (Ar-C), 129.52 (Ar-C), 126.68 (Ar-C), 123.81 (Ar-C), 123.75 (Ar-C), 119.40 (Ar-C). HRMS (ESI-TOF) calcd for C₁₁H₁₀BrN₂ (M+H)⁺ m/z = 249.0027, found 249.0037.

N-(2-Chlorophenyl)pyridin-3-amine (**6**g)

Colourless solid (162 mg, 79%); m. p. 80-81 °C; vmax (KBr)/cm⁻¹: 3332 (Ar-NH-Ar), 3051 (Ar-C-H), 1621 (Ar-C=N), 1421 (Ar-C=C), 694 (Ar-Cl); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.47 (s, 1H, Ar-H), 8.27 (d, *J* = 4.4 Hz, 1H, Ar-H), 7.49 (qd, *J* = 1.2 Hz and 1.2 Hz, 1H, Ar-H), 7.40 (dd, *J* = 1.2 Hz and 1.2 Hz, 1H, Ar-H), 7.25 (q, *J* = 4.8 Hz and 4.8 Hz, 1H, Ar-H), 7.17 (t, *J* = 7.2 Hz, 1H, Ar-H), 6.90 (t, *J* = 8.0 Hz, 1H, Ar-H), 6.09 (s, 1H, Ar-N<u>H</u>); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 143.48 (Ar-C), 142.06 (Ar-C), 139.26 (Ar-C), 138.36 (Ar-C), 130.02 (Ar-C), 127.60 (Ar-C), 126.08 (Ar-C), 123.79 (Ar-C), 122.47 (Ar-C), 121.62 (Ar-C), 116.08 (Ar-C); HRMS (ESI-TOF) calcd for C₁₁H₁₀ClN₂ (M+H)⁺ m/z = 205.0533, found 205.0537.

N-(3-Chlorophenyl)pyridin-3-amine (**6h**)

Colourless solid (170 mg, 83%); m. p. 88-90 °C; vmax (KBr)/cm⁻¹: 3332 (Ar-NH-Ar), 3051 (Ar-C-H), 1620 (Ar-C=N), 1469 (Ar-C=C), 693 (Ar-Cl); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.39 (d, J = 2.8 Hz, 1H, Ar-H), 8.22 (dd, J = 1.2 Hz and 1.2 Hz, 1H, Ar-H), 7.46 (qd, J = 1.2 Hz and 1.6 Hz, 1H, Ar-H), 7.22 - 7.16 (m, 2H, Ar-H), 7.05 (t, J = 2.0 Hz, 1H, Ar-H), 6.935 (qd, J = 2.0 Hz and 1.6 Hz, 2H, Ar-H), 6.14 (s, 1H, Ar-NH); ¹³C NMR (100 MHz, CDCl₃, δ ppm): 143.74 (Ar-C), 142.80 (Ar-C), 140.98 (Ar-C), 138.93 (Ar-C), 135.21 (Ar-C), 130.55 (Ar-C), 124.71 (Ar-C), 123.86 (Ar-C), 121.54 (Ar-C), 117.32 (Ar-C), 115.63 (Ar-C); HRMS (ESI-TOF) calcd for C₁₁H₁₀ClN₂ (M+H)⁺ m/z = 205.0533, found 205.0537.

N-(4-Chlorophenyl)pyridin-3-amine (**6i**)³

Off white solid (178 mg, 87%); m. p. 90-92 °C; vmax (KBr)/cm⁻¹: 3330 (Ar-NH-Ar), 3053 (Ar-C-H), 1618 (Ar-C=N), 1449 (Ar-C=C); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.36 (d, *J* = 2.4 Hz, 1H, Ar-H), 8.18 (dd, *J* = 1.2 Hz and 1.2 Hz, 1H, Ar-H), 7.39 (qd, *J* = 1.2 Hz and 1.2 Hz, 1H, Ar-H), 7.26-7.22 (m, 2H, Ar-H), 7.19 (q, *J* = 4.8 Hz and 4.4 Hz, 1H, Ar-H), 7.02-6.98 (m, 2H, Ar-H), 6.00 (s, 1H, Ar-NH); ¹³C NMR (100 MHz, CDCl₃, δ ppm): 168.37 (Ar-C), 157.97 (Ar-C), 156.29 (Ar-C), 152.73 (Ar-C), 139.76 (Ar-C), 135.52 (Ar-C), 129.62(Ar-C), 125.62 (Ar-C), 124.96 (Ar-C); HRMS (ESI-TOF) calcd for C₁₁H₁₀ClN₂ (M+H)⁺ m/z = 205.0533, found 205.0537.

5-Bromo-N-(pyridin-3-yl)pyridin-2-amine (6j)

Pale yellow crystalline solid (212 mg, 85%); m. p. 85-88 °C; *v*max (KBr)/cm⁻¹: 3445 (Ar-NH-Ar), 3051 (Ar-C-H), 1611 (Ar-C=N), 1467

(Ar-C=C), 684 (C-Br); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.08 (s, 2H, Ar-H), 7.49 (dd, J = 2.4 Hz and 2.8 Hz, 2H, Ar-H), 6.42 (d, J = 8.8 Hz, 3H, Ar-H), 4.685 (s, 1H, Ar-NH); ¹³C NMR (100 MHz, CDCl₃, δ ppm): 157.17 (Ar-C), 148.55 (Ar-C), 140.12 (Ar-C), 110.14 (Ar-C), 108.09 (Ar-C); HRMS (ESI-TOF) calcd for C₁₀H₉BrN₃ (M+H)⁺ m/z = 249.9980, found 249.9982.

2-Chloro-N-pyridin-3-yl)pyridin-3-amine (6k)⁴

Pale black solid (167 mg, 81%); m. p. 81-83 °C; vmax (KBr)/cm⁻¹: 3331 (Ar-NH-Ar), 3150 (Ar-C-H), 1609 (Ar-C=N), 1512 (Ar-C=C); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.79 (t, *J* = 2.8 Hz, 2H, Ar-H), 7.04 (d, *J* = 3.2 Hz, 5H, Ar-H), 4.167 (s, 1H, Ar-NH); ¹³C NMR (100 MHz, CDCl₃, δ ppm): 139.75 (Ar-C), 138.51 (Ar-C), 136.90 (Ar-C), 123.38 (Ar-C), 122.44 (Ar-C); HRMS (ESI-TOF) calcd for C₁₀H₉ClN₃ (M+H)⁺ = 206.0485, found 206.0486.

5-Iodo-*N*-(pyrid-3-yl)pyrimidin-2-amine (6l)

Colourless solid (245 mg, 82%); m. p. 90-93 °C; vmax (KBr)/cm⁻¹: 3323 (Ar-NH-Ar), 3175 (Ar-C-H), 1636 (Ar-C=N), 1474 (Ar-C=C), 527 (C-I); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.40 (s, 4H, Ar-H), 7.26 (s, 2H, Ar-H), 5.06 (s, 1H, Ar-NH); ¹³C NMR (100 MHz, CDCl₃, δ ppm): 142.52 (Ar-C), 141.28 (Ar-C), 140.51 (Ar-C), 139.25 (Ar-C), 132.45 (Ar-C), 124.01 (Ar-C), 123.80 (Ar-C), 119.59 (Ar-C), 113.89 (Ar-<u>C</u>); HRMS (ESI-TOF) calcd for C₉H₈IN₄ (M+H)⁺ m/z = 298.9794, found 298.9794.

4-(Pyridin-3-yl)morpholine (6aa)⁵

Pale yellow liquid (153 mg, 93%); vmax (KBr)/cm⁻¹: 3019 (Ar-C-H),

2962 (Ali-C-H), 1621 (Ar-C=N), 1483 (Ar-C=C), 1242 (C-N), 1121 (C-O); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.31 (s, 1H, Ar-H), 8.13 (s, 1H, Ar-H), 7.18 (s, 2H, Ar-H), 3.88 (t, J = 4.8 Hz, 4H, $-C\underline{H}_2$ -O-C \underline{H}_2 -), 3.20 (t, J = 4.8 Hz, 4H, Ar-N-C \underline{H}_2 -); ¹³C NMR (100 MHz, CDCl₃, δ ppm): 146.75 (Ar-C), 141.02 (Ar-C), 138.23 (Ar-C), 123.57 (Ar-C), 122.13 (Ar-C), 66.66 ($-C\underline{H}_2$ -O- $C\underline{H}_2$ -), 48.58 (Ar-N- $C\underline{H}_2$ -); HRMS (ESI-TOF) calcd for C₉H₁₃N₂O (M+H)⁺ m/z = 165.1028, found 165.1022.

N-Benzyl-*N*-methyl pyridin-3-amine (**6ab**)⁶

Pale yellow liquid (179 mg, 90%); dried to solid slowly upon washing with ether; m. p. 89-91 °C; *v*max (KBr)/cm⁻¹: 3021 (Ar-C-H), 2985 (Ali-C-H), 1617 (Ar-C=N), 1483 (Ar-C=C); 1367 (C-N); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.16 (d, J = 2.8 Hz, 1H, Ar-H), 7.95 (d, J = 3.6 Hz, 1H, Ar-H), 7.32 (t, J = 6.8 Hz, 2H, Ar-H), 7.25 (d, J = 7.2 Hz, 1H, Ar-H), 7.19 (d, J = 7.2 Hz, 2H, Ar-H), 7.08 (q, J = 4.8 Hz and 4.8 Hz, 1H, Ar-H), 6.97 (dd, J = 2.0 Hz and 1.6 Hz, 1H, Ar-H), 4.51 (s, 2H, Ar-CH₂-), 3.03 (s, 3H, Ar-N-CH₃-); ¹³C NMR (100 MHz, CDCl₃, δ ppm): 145.36 (Ar-C), 137.91 (Ar-C), 134.97 (Ar-C), 128.74 (Ar-C), 127.19 (Ar-C), 126.66 (Ar-C), 123.49 (Ar-C), 118.61 (Ar-C), 56.18 (Ar-CH₂-), 38.38 (Ar-N-CH₃-); HRMS (ESI-TOF) calcd for C₁₃H₁₅N₂ (M+H)⁺ m/z = 199.1235, found 199.1236.

1-Benzyl-4-(pyridin-3-yl)piperazine (**6ac**)⁷

*P*ale brown solid (221 mg, 87%); m. p. 63-65 °C; *v*max (KBr)/cm⁻¹ : 3032 (Ar-C-H), 2957 (Ali-C-H), 1611 (Ar-C=N), 1477 (Ar-C=C); 1243 (C-N); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.29 (s, 1H, Ar-H), 8.08 (dd, *J* = 2.0 Hz and 2.0 Hz, 1H, Ar-H), 7.36-7.27 (m, 5H, Ar-H), 7.16 (t, *J* = 2.4 Hz, 2H, Ar-H), 3.57 (s, 2H, Ar-C<u>H</u>₂-), 3.23 (t, *J* = 4.8 Hz, 4H, Ar-N-C<u>H</u>₂-), 2.62 (t, *J* = 5.2 Hz, 4H, Ar-CH₂-N-C<u>H</u>₂-); ¹³C NMR (100 MHz, CDCl₃, δ ppm): 147.02 (Ar-C), 140.51 (Ar-C), 138.45 (Ar-C), 137.80 (Ar-C), 129.20 (Ar-C), 128.33 (Ar-C), 127.24 (Ar-C), 123.47 (Ar-C), 122.28 (Ar-C), 63.01 (Ar-<u>C</u>H₂-), 52.78 (Ar-N-<u>C</u>H₂-), 48.41 (Ar-CH₂-N-<u>C</u>H₂-); HRMS (ESI-TOF) calcd for C₁₆H₂₀N₃ (M+H)⁺ m/z = 254.1657, found 254.1649.

1-Benzhydryl-4-(pyridin-3-yl)piperazine (6ad)

Brown liquid (277 mg, 84%); *ν*max (KBr)/cm⁻¹: 3039 (Ar-C-H), 1624 (Ar-C=N), 1475 (Ar-C=C); 1325 (C-N); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.27 (s, 1H, Ar-H), 8.08 (t, J = 2.8 Hz, 1H, Ar-H), 7.45 (d, J = 7.2 Hz, 4H, Ar-H), 7.30 (t, J = 7.2 Hz, 4H, Ar-H), 7.21 (t, J = 7.2 Hz, 2H, Ar-H), 7.14 (q, J = 1.6 Hz and 1.2 Hz, 2H, Ar-H), 4.27 (s, 1H, (Ar)₂-C<u>H</u>-), 3.23 (t, J = 4.8 Hz, 4H, Ar-N-C<u>H</u>₂-), 2.57 (t, J = 5.2 Hz, 4H, (Ar)₂-CH-N-C<u>H</u>₂-); ¹³C NMR (100 MHz, CDCl₃, δ ppm): 146.97 (Ar-C), 142.46 (Ar-C), 140.42 (Ar-C), 138.21 (Ar-C), 128.61 (Ar-C), 127.90 (Ar-C), 127.12 (Ar-C), 123.46 (Ar-C), 122.10 (Ar-C), 76.15 (Ar)₂-<u>C</u>H-), 51.65 (Ar-N-<u>C</u>H₂), 48.52 ((Ar)₂-CH-N-<u>C</u>H₂-); HRMS (ESI-TOF) calcd for C₂₂H₂₄N₃ (M+H)⁺ m/z = 330.1970, found 330.1972.

2-(Pyridin-3-yl)-1,2,3,4-tetrahydroisoquinoline (6ae)⁸

Brown liquid (192 mg, 91%); vmax (KBr)/cm⁻¹: 3036 (Ar-C-H), 2921 (Ali-C-H), 1608 (Ar-C=N), 1429 (Ar-C=C); 1322 (C-N); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.57 (d, J = 2.4 Hz, 1H, Ar-H), 8.37 (dd, J = 1.6 Hz and 1.6 Hz, 1H, Ar-H), 8.24 (d, J = 2.0 Hz, 1H, Ar-H), 8.05 (d, J = 8.0 Hz, 1H, Ar-H), 7.95 (d, J = 3.2 Hz, 1H, Ar-H), 7.69 (qd, J = 1.6 Hz and 1.2 Hz, 1H, Ar-H), 7.39 (t, J = 7.6 Hz, 1H, Ar-H), 7.35-7.21 (m, 1H, Ar-H), 4.30 (s, 2H, Ali-H), 3.91 (t, J = 6.4 Hz, 1H, Ali-H), 3.45 (d, J = 6.0 Hz, 1H, Ali-H), 3.05 (t, J = 6.4 Hz, 1H, Ali-H); 2.88 (t, *J* = 6.0 Hz, 1H, Ali-H). ¹³C NMR (100 MHz, CDCl₃, δ ppm): 164.34 (Ar-C), 146.91 (Ar-C), 139.34 (Ar-C), 137.13 (Ar-C), 134.56 (Ar-C), 128.51 (Ar-C), 126.26 (Ar-C), 123.59 (Ar-C), 121.04 (Ar-C), 49.75 (Ali-CH), 45.64 (Ali-CH), 28.78 (Ali-CH); HRMS (ESI-TOF) calcd for $C_{14}H_{15}N_2$ (M+H)⁺ *m/z* = 211.1235, found 211.1237.

N-(4-Methyl-5-(p-tolylamino)pyridin-2-yl)acetamide (6ba)

Colourless solid (213 mg, 83%); m. p. 120-122 °C; vmax (KBr)/cm⁻¹: 3026 (Ar-C-H), 2897 (Ali-C-H), 1611 (Ar-C=N), 1438 (Ar-C=C); 1322 (C-N); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.70 (s, 1H, Ar-H), 8.07 (s, 2H, Ar-H), 7.05 (d, J = 6.0 Hz, 2H, Ar-H), 6.75 (d, J = 6.4 Hz, 2H, Ar-H), 5.19 (s, 1H, Ar-H), 2.28 (s, 3H, Ar-NHCOCH₃), 2.25 (s, 3H, Ar-CH₃), 2.16 (s, 3H, Ar-CH₃); ¹³C NMR (100 MHz, CDCl₃, δ ppm): 168.48 (Ar-NHCO-), 146.73 (Ar-C), 141.95 (Ar-C), 141.64 (Ar-C), 139.78 (Ar-C), 135.07 (Ar-C), 130.19 (Ar-C), 129.99 (Ar-C), 116.89 (Ar-C), 115.90 (Ar-C), 24.59 (Ar-NHCO<u>C</u>H₃), 20.58 (Ar-CH₃), 17.97 (Ar-CH₃); HRMS (ESI-TOF) calcd for C₁₅H₁₈N₃O (M+H)⁺ m/z = 256.1450, found 256.1451.

N-(4-Methyl-5-(4-(trifluoromethoxy)phenyl)amino)pyridin-2-yl)acetamide (6bb)

Colourless solid (258 mg, 79%); m. p. 125-127 °C; vmax (KBr)/cm⁻¹: 3039 (Ar-C-H), 2921 (Ali-C-H), 1623 (Ar-C=N), 1429 (Ar-C=C); 1322 (C-N); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.58 (s, 1H, Ar-N<u>H</u>-CO-), 8.04 (d, *J* = 16.8 Hz, 2H, Ar-H), 6.98 (d, *J* = 5.6 Hz, 2H, Ar-H), 6.64 (d, *J* = 6.4 Hz, 2H, Ar-H), 5.30 (s, 1H, Ar-NH-), 2.17 (s, 3H, Ar-NHCOC<u>H₃</u>), 2.10 (s, 3H, Ar-CH₃); ¹³C NMR (100 MHz, CDCl₃, δ ppm): 168.63 (Ar-

NHCO-), 147.93 (Ar-C), 144.28 (Ar-C), 143.71 (Ar-C), 142.24 (Ar-C), 133.65 (Ar-O \subseteq F₃), 122.53 (Ar-C), 121.60 (Ar-C), 119.59 (Ar-C), 116.00 (Ar-C), 24.60 (Ar-NHCO \subseteq H₃), 17.98 (Ar-CH₃); HRMS (ESI-TOF) calcd for C₁₅H₁₅F₃N₃O₂ (M+H)⁺ m/z = 326.1116, found 326.1120.

 N^2 , N^4 , N^6 -Tri-p-tolyl-1,3,5-triazine-2,4,6-triamine (**6ca**)

Colourless solid (365 mg, 92%); m. p. 137-139 °C; vmax (KBr)/cm⁻¹: 3043 (Ar-C-H), 2947 (Ali-C-H), 1611 (Ar-C=N), 1429 (Ar-C=C); 1322 (C-N); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.42 (d, *J* = 8.0 Hz, 6H, Ar-H), 7.11 (d, *J* = 8.0 Hz, 6H, Ar-H), 7.05 (s, 3H, Ar-NH-), 2.32 (s, 9H, Ar-CH₃); ¹³C NMR (100 MHz, CDCl₃, δ ppm): 164.30 (Ar-C), 135.94 (Ar-C), 133.10 (Ar-C), 129.38 (Ar-C), 121.06 (Ar-C), 20.93 (Ar-CH₃); HRMS (ESI-TOF) calcd for C₂₄H₂₅N₆ (M+H)⁺ m/z = 397.2141, found 397.2137.

4-(4-chloro-6-phenyl-1,3,5-triazin-2-yl)morpholine (Step ii, int 2 in 6cb synthesis)

Colorless solid (94%); m. p. 87-89 °C; vmax (KBr)/cm⁻¹: 3016 (Ar-C-H), 2958 (Ali-C-H), 1617 (Ar-C=N), 1421 (Ar-C=C); 1328 (C-N), 1161 (C-O); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.41-8.39 (m, 2H, Ar-H), 7.57-7.54 (m, 1H, Ar-H), 7.48-7.45 (m, 2H, Ar-H), 4.06 (t, J = 3.6 Hz, 2H, -C<u>H</u>₂-N-C<u>H</u>₂-), 3.93 (t, J = 3.6 Hz, 2H, -C<u>H</u>₂-N-C<u>H</u>₂-), 3.81-3.77 (m, 4H, -C<u>H</u>₂-O-C<u>H</u>₂-); ¹³C NMR (100 MHz, CDCl₃, δ ppm): 172.33 (Ar-C), 170.99 (Ar-C), 164.75 (Ar-C), 134.92 (Ar-C), 132.73 (Ar-C), 128.90 (Ar-C), 128.47 (Ar-C), 66.58 (-CH₂-O-CH₂-), 44.12 (-CH₂-N-CH₂-), 43.58 (-CH₂-N-CH₂-). 4-Morpholino-6-phenyl-N-(4-(trifluoromethoxy)phenyl)-1,3,5-triazin-2-amine (6cb)

Colourless solid (347 mg, 83%); m. p. 141-143 °C; vmax (KBr)/cm⁻¹: 3029 (Ar-C-H), 2953 (Ali-C-H), 1601 (Ar-C=N), 1421 (Ar-C=C); 1318 (C-N), 1167 (C-O); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.38 (d, J = 7.2 Hz, 2H, Ar-H), 7.64 (d, J = 9.2 Hz, 2H, Ar-H), 7.52-7.43 (m, 3H, Ar-H), 7.20 (d, J = 8.8 Hz, 3H, Ar-H & Ar-NH), 4.01-3.88 (m, 4H, -CH₂-O-CH₂-), 3.80 (t, J = 5.2 Hz, 4H, Ar-N-CH₂); ¹³C NMR (100 MHz, CDCl₃, δ ppm): 171.26 (Ar-C), 165.22 (Ar-C), 164.57 (Ar-C), 144.41 (d, J = 2.0 Hz, Ar-C), 137.71 (Ar-C), 136.75 (Ar-C), 131.82 (Ar-C), 128.43 (d, J = 2.3 Hz, Ar-OCF₃), 121.91 (Ar-C), 121.70 (Ar-C), 120.92 (Ar-C), 66.86 (-CH₂-O-CH₂-), 43.87 (Ar-N-CH₂); HRMS (ESI-TOF) calcd for C₂₀H₁₉F₃N₅O₂ (M+H)⁺ m/z = 418.1491, found 418.1496.

V. ¹H and ¹³C NMR Spectra

VI. X-ray cystallography data for Pd-PEPPSI complex, C6

Table 2. Crystal data and structure refinement.

Identification code	1982273
Empirical formula	$C_{46}H_{62}CI_3N_3Pd$
Formula weight	869.73
Temperature	296(2) K
Wavelength	0.71073 Å
Crystal system	Monoclinic
Space group	P2 ₁ /n
Unit cell dimensions	a = 18.9613(9) Å a= 90°.
b = 9.3523(4) Å	b= 91.116(2)°.
c = 26.6508(12) Å	g = 90°.
Volume	4725.1(4) Å3
Z	4
Density (calculated)	1.223 Mg/m3
Absorption coefficient	0.594 mm-1
F(000)	1824
Crystal size	0.200 x 0.150 x 0.150 mm3
Theta range for data collection	2.149 to 25.000°.
Index ranges	-22<=h<=22, -11<=k<=11, -
	31<=l<=31
Reflections collected	60323
Independent reflections	8307 [R(int) = 0.0764]
Completeness to theta = 25.000°	100.0 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.7453 and 0.6238
Refinement method	Full-matrix least-squares on F2
Data / restraints / parameters	8307 / 294 / 601

Goodness-of-fit on F2	1.052
Final R indices [I>2sigma(I)]	R1 = 0.0535, wR2 = 0.1151
R indices (all data)	R1 = 0.0966, wR2 = 0.1440
Extinction coefficient	0.00137(17)
Largest diff. peak and hole	0.594 and -1.046 e.Å-3

Table 3. Atomic coordinates $(x \ 10^4)$ and equivalent isotropic displacement parameters (Å²x 10³) for **C6**. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

	Х	У	Z	U(eq)
Pd(1)	6672(1)	7884(1)	5265(1)	53(1)
Cl(1)	7724(1)	9024(2)	5137(1)	90(1)
Cl(2)	5698(1)	6465(1)	5410(1)	75(1)
Cl(3)	4406(1)	11187(2)	6007(1)	132(1)
C(1)	5185(3)	11218(6)	5681(2)	75(2)
C(2)	5456(4)	12465(6)	5508(3)	80(2)
C(3)	6062(4)	12404(6)	5254(3)	84(2)
C(4)	6390(3)	11102(6)	5181(2)	80(2)
C(5)	5526(3)	9941(6)	5597(2)	69(2)
C(6)	7903(3)	4246(5)	5357(2)	57(1)
C(7)	7833(3)	4352(5)	4843(2)	57(1)
C(8)	8179(3)	3391(6)	4536(2)	72(2)
C(9)	8600(3)	2349(6)	4748(3)	75(2)
C(10)	8685(3)	2268(6)	5270(3)	71(2)
C(11)	8334(3)	3209(6)	5577(2)	72(2)
C(12)	9172(3)	1160(6)	5510(3)	102(2)
C(13)	8956(4)	1278(7)	4413(3)	113(3)
C(14)	7195(3)	6264(6)	4272(2)	73(2)
C(15)	7441(3)	5515(6)	3810(2)	70(2)
C(16)	8087(4)	5869(7)	3597(2)	82(2)

C(17)	8301(4)	5113(8)	3176(3)	102(2)
C(18)	7900(5)	4027(8)	2967(3)	103(2)
C(19)	7269(4)	3725(7)	3178(2)	97(2)
C(20)	7028(4)	4418(6)	3597(2)	77(2)
C(21)	6327(4)	3984(8)	3818(3)	96(2)
C(22)	5712(4)	4723(9)	3549(3)	126(3)
C(23)	6225(6)	2390(9)	3833(4)	169(4)
C(24)	8583(12)	6920(20)	3864(11)	124(6)
C(25)	8589(16)	8230(30)	3539(12)	151(9)
C(26)	9306(12)	6210(20)	3922(14)	153(8)
C(24')	8554(13)	7130(20)	3781(9)	122(6)
C(25')	8935(17)	8040(30)	3395(10)	155(8)
C(26')	9078(15)	6690(30)	4205(10)	151(8)
C(27)	8155(14)	3120(20)	2528(6)	156(5)
C(28)	8633(17)	1940(30)	2712(8)	181(9)
C(29)	8380(20)	4010(30)	2107(11)	187(9)
C(27')	8200(20)	3210(50)	2522(11)	161(8)
C(28')	8940(20)	2700(70)	2584(17)	177(11)
C(29')	7990(30)	3880(60)	2033(15)	173(11)
C(30)	7317(4)	5676(7)	6085(2)	91(2)
C(31)	7809(4)	5023(7)	6477(2)	81(2)
C(32)	8435(5)	5698(7)	6596(3)	98(2)
C(33)	8863(5)	5101(9)	6977(3)	118(3)
C(34)	8677(5)	3868(9)	7219(3)	111(3)
C(35)	8061(4)	3238(8)	7087(3)	102(2)
C(36)	7608(4)	3771(8)	6713(2)	90(2)
C(37)	6957(5)	2916(12)	6560(3)	126(3)
C(38)	6333(6)	3270(15)	6874(4)	203(6)
C(39)	7077(6)	1323(12)	6531(4)	188(5)

C(40)	9296(12)	3200(20)	7544(8)	167(7)
C(41)	9024(12)	3130(30)	8056(9)	186(9)
C(42)	9529(8)	1768(18)	7369(5)	170(7)
C(40')	9092(15)	3070(40)	7647(10)	144(8)
C(41')	8686(17)	2610(40)	8092(13)	142(9)
C(42')	9693(15)	4010(30)	7831(12)	184(11)
C(43)	8770(20)	6970(30)	6337(12)	133(7)
C(44)	9220(20)	6630(40)	5876(12)	136(9)
C(45)	9190(30)	8080(30)	6636(11)	162(9)
C(43')	8594(12)	7077(16)	6330(8)	122(5)
C(44')	9322(13)	6910(30)	6119(11)	171(8)
C(45')	8572(16)	8337(16)	6671(6)	141(7)
C(46)	7212(2)	6141(5)	5185(2)	49(1)
N(1)	6118(2)	9864(4)	5354(2)	61(1)
N(2)	7500(2)	5356(4)	5559(2)	58(1)
N(3)	7406(2)	5553(4)	4749(2)	53(1)

Table 4.	Bond lengths [Å] and angles [°]
	Pd(1)-C(46)

Pd(1)-C(46)	1.939(5)
Pd(1)-N(1)	2.144(4)
Pd(1)-Cl(1)	2.2939(15)
Pd(1)-Cl(2)	2.3139(14)
Cl(3)-C(1)	1.729(6)
C(1)-C(2)	1.358(8)
C(1)-C(5)	1.378(7)
C(2)-C(3)	1.347(8)
C(3)-C(4)	1.383(8)
C(4)-N(1)	1.351(7)
C(5)-N(1)	1.309(7)

C(6)-C(7)	1.377(7)
C(6)-C(11)	1.390(7)
C(6)-N(2)	1.401(6)
C(7)-C(8)	1.389(7)
C(7)-N(3)	1.405(6)
C(8)-C(9)	1.375(8)
C(9)-C(10)	1.398(8)
C(9)-C(13)	1.512(8)
C(10)-C(11)	1.382(8)
C(10)-C(12)	1.521(8)
C(14)-N(3)	1.484(6)
C(14)-C(15)	1.499(7)
C(15)-C(16)	1.400(8)
C(15)-C(20)	1.403(8)
C(16)-C(17)	1.394(8)
C(16)-C(24)	1.528(15)
C(16)-C(24')	1.546(14)
C(17)-C(18)	1.381(9)
C(18)-C(19)	1.362(9)
C(18)-C(27')	1.528(17)
C(18)-C(27)	1.530(12)
C(19)-C(20)	1.377(8)
C(20)-C(21)	1.519(9)
C(21)-C(23)	1.504(10)
C(21)-C(22)	1.524(10)
C(24)-C(25)	1.493(17)
C(24)-C(26)	1.532(19)
C(24')-C(25')	1.531(18)
C(24')-C(26')	1.546(17)

C(27)-C(29)	1.466(17)
C(27)-C(28)	1.505(16)
C(27')-C(29')	1.495(19)
C(27')-C(28')	1.50(2)
C(30)-N(2)	1.481(6)
C(30)-C(31)	1.516(8)
C(31)-C(32)	1.377(9)
C(31)-C(36)	1.387(9)
C(32)-C(33)	1.402(9)
C(32)-C(43')	1.505(13)
C(32)-C(43)	1.519(16)
C(33)-C(34)	1.371(10)
C(34)-C(35)	1.350(10)
C(34)-C(40')	1.564(17)
C(34)-C(40)	1.575(14)
C(35)-C(36)	1.394(9)
C(36)-C(37)	1.521(11)
C(37)-C(38)	1.498(12)
C(37)-C(39)	1.509(13)
C(40)-C(41)	1.470(16)
C(40)-C(42)	1.486(16)
C(40')-C(41')	1.488(19)
C(40')-C(42')	1.511(19)
C(43)-C(45)	1.523(19)
C(43)-C(44)	1.545(19)
C(43')-C(45')	1.490(16)
C(43')-C(44')	1.509(17)
C(46)-N(3)	1.342(6)
C(46)-N(2)	1.346(6)

C(46)-Pd(1)-N(1)	177.45(19)
C(46)-Pd(1)-Cl(1)	84.93(14)
N(1)-Pd(1)-Cl(1)	92.54(13)
C(46)-Pd(1)-Cl(2)	87.77(14)
N(1)-Pd(1)-Cl(2)	94.74(13)
Cl(1)-Pd(1)-Cl(2)	172.47(6)
C(2)-C(1)-C(5)	120.5(6)
C(2)-C(1)-Cl(3)	121.2(5)
C(5)-C(1)-Cl(3)	118.4(5)
C(3)-C(2)-C(1)	117.8(6)
C(2)-C(3)-C(4)	119.8(6)
N(1)-C(4)-C(3)	122.1(6)
N(1)-C(5)-C(1)	122.5(5)
C(7)-C(6)-C(11)	120.9(5)
C(7)-C(6)-N(2)	106.5(4)
C(11)-C(6)-N(2)	132.5(5)
C(6)-C(7)-C(8)	120.2(5)
C(6)-C(7)-N(3)	106.2(4)
C(8)-C(7)-N(3)	133.5(5)
C(9)-C(8)-C(7)	119.4(6)
C(8)-C(9)-C(10)	120.2(5)
C(8)-C(9)-C(13)	119.2(7)
C(10)-C(9)-C(13)	120.5(6)
C(11)-C(10)-C(9)	120.4(5)
C(11)-C(10)-C(12)	118.7(6)
C(9)-C(10)-C(12)	120.8(6)
C(10)-C(11)-C(6)	118.7(6)
N(3)-C(14)-C(15)	114.3(4)
C(16)-C(15)-C(20)	119.7(5)

C(16)-C(15)-C(14)	120.7(5)
C(20)-C(15)-C(14)	119.6(6)
C(17)-C(16)-C(15)	118.5(6)
C(17)-C(16)-C(24)	121.0(13)
C(15)-C(16)-C(24)	120.0(13)
C(17)-C(16)-C(24')	117.9(12)
C(15)-C(16)-C(24')	123.5(12)
C(18)-C(17)-C(16)	122.1(7)
C(19)-C(18)-C(17)	117.9(6)
C(19)-C(18)-C(27')	124(2)
C(17)-C(18)-C(27')	118(2)
C(19)-C(18)-C(27)	119.7(12)
C(17)-C(18)-C(27)	122.4(13)
C(18)-C(19)-C(20)	123.1(7)
C(19)-C(20)-C(15)	118.8(6)
C(19)-C(20)-C(21)	119.6(6)
C(15)-C(20)-C(21)	121.6(6)
C(23)-C(21)-C(20)	113.0(7)
C(23)-C(21)-C(22)	111.4(8)
C(20)-C(21)-C(22)	111.3(6)
C(25)-C(24)-C(16)	106(2)
C(25)-C(24)-C(26)	113.6(17)
C(16)-C(24)-C(26)	107.7(17)
C(25')-C(24')-C(26')	109.5(15)
C(25')-C(24')-C(16)	119(2)
C(26')-C(24')-C(16)	112.8(16)
C(29)-C(27)-C(28)	118.9(15)
C(29)-C(27)-C(18)	112(2)
C(28)-C(27)-C(18)	110.8(14)

C(29')-C(27')-C(28')	118(2)
C(29')-C(27')-C(18)	112(3)
C(28')-C(27')-C(18)	116(3)
N(2)-C(30)-C(31)	114.8(5)
C(32)-C(31)-C(36)	121.8(6)
C(32)-C(31)-C(30)	119.4(7)
C(36)-C(31)-C(30)	118.9(7)
C(31)-C(32)-C(33)	117.9(7)
C(31)-C(32)-C(43')	117.6(10)
C(33)-C(32)-C(43')	124.3(11)
C(31)-C(32)-C(43)	128.1(17)
C(33)-C(32)-C(43)	113.7(18)
C(34)-C(33)-C(32)	121.7(8)
C(35)-C(34)-C(33)	118.3(7)
C(35)-C(34)-C(40')	113.7(13)
C(33)-C(34)-C(40')	128.0(14)
C(35)-C(34)-C(40)	127.0(11)
C(33)-C(34)-C(40)	113.5(12)
C(34)-C(35)-C(36)	123.2(7)
C(31)-C(36)-C(35)	117.1(7)
C(31)-C(36)-C(37)	123.4(7)
C(35)-C(36)-C(37)	119.3(7)
C(38)-C(37)-C(39)	111.6(10)
C(38)-C(37)-C(36)	112.3(9)
C(39)-C(37)-C(36)	114.2(8)
C(41)-C(40)-C(42)	111.2(17)
C(41)-C(40)-C(34)	104.9(18)
C(42)-C(40)-C(34)	114.1(13)
C(41')-C(40')-C(42')	108(2)

C(41')-C(40')-C(34)	117(2)
C(42')-C(40')-C(34)	108.9(19)
C(32)-C(43)-C(45)	121(2)
C(32)-C(43)-C(44)	116(3)
C(45)-C(43)-C(44)	105.0(18)
C(45')-C(43')-C(32)	112.5(14)
C(45')-C(43')-C(44')	110.2(15)
C(32)-C(43')-C(44')	106.3(17)
N(3)-C(46)-N(2)	107.6(4)
N(3)-C(46)-Pd(1)	126.5(4)
N(2)-C(46)-Pd(1)	125.8(4)
C(5)-N(1)-C(4)	117.2(5)
C(5)-N(1)-Pd(1)	121.9(4)
C(4)-N(1)-Pd(1)	120.8(4)
C(46)-N(2)-C(6)	109.7(4)
C(46)-N(2)-C(30)	119.4(4)
C(6)-N(2)-C(30)	130.6(4)
C(46)-N(3)-C(7)	109.9(4)
C(46)-N(3)-C(14)	118.9(4)
C(7)-N(3)-C(14)	131.1(4)

Symmetry transformations are used to generate equivalent atoms

Table 5. Anisotropic displacement parameters (Å²x 10³). The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h² a^{*2}U¹¹ + ... + 2 h k a^{*} b^{*} U¹²].

	$U^{\mathtt{1}\mathtt{1}}$	U ²²	U ³³	U ²³	U ¹³	U ¹²
Pd(1)	60(1)	42(1)	56(1)	-1(1)	0(1)	2(1)
Cl(1)	68(1)	61(1)	142(2)	-9(1)	14(1)	-17(1)
CI(2)	62(1)	47(1)	118(1)	8(1)	7(1)	-3(1)

Cl(3)	120(2)	81(1)	198(2)	3(1)	73(2)	21(1)
C(1)	77(4)	57(4)	92(5)	-3(3)	9(3)	10(3)
C(2)	97(5)	47(3)	97(5)	1(3)	-5(4)	14(3)
C(3)	101(5)	50(4)	103(5)	15(3)	6(4)	4(3)
C(4)	91(4)	59(4)	90(5)	16(3)	16(4)	3(3)
C(5)	81(4)	52(3)	75(4)	-1(3)	11(3)	2(3)
C(6)	59(3)	47(3)	65(4)	-5(3)	0(3)	6(2)
C(7)	62(3)	44(3)	65(4)	-4(3)	4(3)	4(2)
C(8)	97(4)	48(3)	72(4)	-2(3)	12(3)	10(3)
C(9)	79(4)	44(3)	102(5)	-4(3)	28(4)	4(3)
C(10)	58(3)	43(3)	111(5)	-2(3)	-1(3)	3(3)
C(11)	78(4)	60(4)	76(4)	-1(3)	-10(3)	17(3)
C(12)	75(4)	57(4)	172(7)	-5(4)	-30(4)	17(3)
C(13)	142(7)	61(4)	137(7)	3(4)	58(5)	33(4)
C(14)	106(5)	59(3)	53(3)	2(3)	1(3)	13(3)
C(15)	99(5)	57(3)	53(3)	-4(3)	8(3)	1(3)
C(16)	95(5)	76(4)	76(4)	-15(3)	10(4)	-13(4)
C(17)	119(6)	101(5)	87(5)	-13(4)	44(4)	-15(5)
C(18)	152(7)	85(5)	74(5)	-23(4)	36(5)	-19(5)
C(19)	135(6)	84(5)	74(5)	-14(4)	19(4)	-26(5)
C(20)	108(5)	65(4)	58(4)	3(3)	13(3)	-11(4)
C(21)	106(5)	89(5)	94(5)	12(4)	14(4)	-21(4)
C(22)	113(6)	140(7)	125(7)	15(6)	5(5)	-32(6)
C(23)	197(11)	107(7)	205(11)	33(7)	60(9)	-45(7)
C(24)	128(11)	118(11)	128(12)	-27(10)	27(10)	-40(10)
C(25)	178(19)	106(13)	170(18)	-26(13)	31(16)	-75(15)
C(26)	136(15)	154(16)	169(18)	-49(14)	-18(14)	-56(13)
C(24')	130(11)	120(12)	117(11)	-26(11)	14(10)	-40(10)
C(25')	170(18)	109(13)	186(17)	-3(13)	54(14)	-62(14)

C(26')	149(16)	154(16)	151(17)	-28(14)	-9(14)	-57(14)
C(27)	227(13)	147(11)	97(9)	-34(8)	77(9)	-17(10)
C(28)	234(19)	147(16)	164(14)	-59(12)	71(13)	31(14)
C(29)	240(20)	201(15)	122(14)	-25(12)	103(15)	-43(17)
C(27')	229(16)	154(14)	103(13)	-35(13)	77(13)	-9(14)
C(28')	220(20)	170(20)	144(19)	-32(19)	68(19)	20(20)
C(29')	230(20)	210(20)	85(15)	-53(16)	80(20)	-30(20)
C(30)	119(5)	106(5)	47(3)	2(3)	-3(3)	48(4)
C(31)	115(5)	76(4)	53(4)	-2(3)	-15(4)	24(4)
C(32)	152(7)	69(4)	73(5)	10(4)	-25(5)	0(5)
C(33)	149(7)	108(6)	97(6)	17(5)	-45(5)	-28(6)
C(34)	144(7)	99(6)	89(5)	20(5)	-51(5)	-1(5)
C(35)	135(7)	86(5)	84(5)	22(4)	-20(5)	-3(5)
C(36)	115(6)	90(5)	65(4)	-1(4)	-16(4)	11(4)
C(37)	117(7)	160(9)	100(6)	9(6)	-13(5)	-19(7)
C(38)	145(10)	306(17)	159(10)	-11(11)	31(8)	-44(11)
C(39)	223(13)	150(10)	190(12)	-19(9)	-24(9)	-63(10)
C(40)	220(15)	158(11)	119(11)	75(9)	-77(11)	-36(12)
C(41)	200(20)	199(19)	159(14)	39(15)	-39(16)	45(15)
C(42)	190(14)	181(15)	136(12)	26(11)	-28(10)	104(12)
C(40')	171(16)	178(14)	81(12)	77(12)	-64(13)	-16(13)
C(41')	150(20)	158(19)	119(15)	90(14)	-39(16)	-28(16)
C(42')	190(20)	200(20)	154(19)	76(17)	-104(17)	-29(18)
C(43)	178(16)	106(12)	115(12)	16(11)	-17(13)	-24(13)
C(44)	165(18)	122(16)	121(19)	-7(15)	-20(16)	-39(14)
C(45)	230(20)	110(15)	145(16)	9(13)	-6(19)	-47(17)
C(43')	164(12)	93(8)	109(9)	15(8)	-20(9)	-19(9)
C(44')	201(16)	147(15)	166(18)	29(15)	3(16)	-56(14)
C(45')	228(19)	78(9)	117(10)	10(8)	-19(13)	-42(12)

C(46)	55(3)	42(3)	51(3)	-4(2)	1(2)	-3(2)
N(1)	75(3)	46(3)	62(3)	1(2)	-1(2)	5(2)
N(2)	69(3)	56(3)	50(3)	-3(2)	-4(2)	13(2)
N(3)	63(3)	47(2)	50(2)	-3(2)	2(2)	4(2)

Table 6. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å²x 10^3) for **C6**.

	Х	У	Z	U(eq)
H(2)	5231	13332	5564	97
H(3)	6260	13237	5127	101
H(4)	6811	11077	5009	96
H(5)	5329	9103	5719	83
H(8)	8126	3452	4189	87
H(11)	8385	3150	5924	86
H(12A)	9650	1359	5420	153
H(12B)	9042	224	5392	153
H(12C)	9132	1198	5868	153
H(13A)	8831	1473	4069	169
H(13B)	8807	330	4498	169
H(13C)	9459	1351	4458	169
H(14A)	7381	7230	4274	87
H(14B)	6684	6332	4256	87
H(17)	8729	5346	3032	122
H(19)	6987	3017	3033	117
H(21)	6331	4321	4166	115
H(22A)	5706	4461	3200	189
H(22B)	5764	5740	3579	189
H(22C)	5277	4433	3697	189
H(23A)	6087	2053	3506	253

H(23B)	5864	2160	4068	253
H(23C)	6659	1938	3936	253
H(24)	8400	7165	4195	149
H(25A)	8894	8934	3689	227
H(25B)	8757	7978	3213	227
H(25C)	8119	8604	3508	227
H(26A)	9266	5380	4133	230
H(26B)	9468	5919	3598	230
H(26C)	9635	6867	4070	230
H(24')	8225	7788	3941	146
H(25D)	8609	8313	3131	232
H(25E)	9120	8887	3555	232
H(25F)	9315	7504	3256	232
H(26D)	8839	6120	4448	227
H(26E)	9458	6154	4066	227
H(26F)	9263	7537	4365	227
H(27)	7731	2630	2402	187
H(28A)	8418	1455	2986	271
H(28B)	8711	1276	2444	271
H(28C)	9077	2340	2822	271
H(29A)	8023	4714	2033	280
H(29B)	8814	4484	2196	280
H(29C)	8448	3421	1818	280
H(27')	7927	2318	2522	193
H(28D)	9010	2298	2913	266
H(28E)	9038	1988	2336	266
H(28F)	9260	3493	2544	266
H(29D)	7498	4155	2042	259
H(29E)	8271	4707	1975	259

H(29F)	8050	3202	1766	259
H(30A)	6843	5335	6142	109
H(30B)	7316	6705	6129	109
H(33)	9284	5552	7067	142
H(35)	7932	2406	7253	122
H(37)	6832	3223	6218	151
H(38A)	5932	2730	6757	305
H(38B)	6232	4273	6847	305
H(38C)	6437	3032	7218	305
H(39A)	7238	977	6852	282
H(39B)	7427	1124	6284	282
H(39C)	6644	855	6438	282
H(40)	9700	3851	7542	200
H(41A)	8588	2605	8053	280
H(41B)	8946	4077	8179	280
H(41C)	9362	2649	8271	280
H(42A)	9923	1452	7571	254
H(42B)	9666	1830	7024	254
H(42C)	9148	1098	7397	254
H(40')	9299	2209	7500	173
H(41D)	9002	2500	8375	212
H(41E)	8458	1714	8021	212
H(41F)	8337	3319	8166	212
H(42D)	9525	4963	7878	276
H(42E)	10060	4005	7588	276
H(42F)	9875	3642	8144	276
H(43)	8364	7509	6199	160
H(44A)	9404	7509	5742	204
H(44B)	9605	6022	5976	204

H(44C)	8935	6164	5625	204
H(45A)	9358	8801	6413	243
H(45B)	8893	8508	6882	243
H(45C)	9583	7619	6801	243
H(43')	8252	7213	6054	147
H(44D)	9330	6098	5900	256
H(44E)	9441	7756	5934	256
H(44F)	9658	6778	6389	256
H(45D)	8676	9189	6486	212
H(45E)	8110	8416	6810	212
H(45F)	8915	8219	6938	212

Table 7. Torsion angles [°]

C(5)-C(1)-C(2)-C(3)	0.3(10)
Cl(3)-C(1)-C(2)-C(3)	-179.5(5)
C(1)-C(2)-C(3)-C(4)	-0.7(10)
C(2)-C(3)-C(4)-N(1)	0.8(10)
C(2)-C(1)-C(5)-N(1)	0.1(10)
Cl(3)-C(1)-C(5)-N(1)	179.9(5)
C(11)-C(6)-C(7)-C(8)	1.9(8)
N(2)-C(6)-C(7)-C(8)	179.7(5)
C(11)-C(6)-C(7)-N(3)	-176.1(5)
N(2)-C(6)-C(7)-N(3)	1.7(5)
C(6)-C(7)-C(8)-C(9)	-1.1(8)
N(3)-C(7)-C(8)-C(9)	176.2(5)
C(7)-C(8)-C(9)-C(10)	-0.6(9)
C(7)-C(8)-C(9)-C(13)	178.1(5)
C(8)-C(9)-C(10)-C(11)	1.6(9)
C(13)-C(9)-C(10)-C(11)	-177.2(6)

C(8)-C(9)-C(10)-C(12)	-177.5(5)
C(13)-C(9)-C(10)-C(12)	3.8(9)
C(9)-C(10)-C(11)-C(6)	-0.8(9)
C(12)-C(10)-C(11)-C(6)	178.3(5)
C(7)-C(6)-C(11)-C(10)	-0.9(8)
N(2)-C(6)-C(11)-C(10)	-178.1(5)
N(3)-C(14)-C(15)-C(16)	-91.4(7)
N(3)-C(14)-C(15)-C(20)	86.7(7)
C(20)-C(15)-C(16)-C(17)	0.1(10)
C(14)-C(15)-C(16)-C(17)	178.2(6)
C(20)-C(15)-C(16)-C(24)	-172.2(13)
C(14)-C(15)-C(16)-C(24)	5.9(15)
C(20)-C(15)-C(16)-C(24')	175.5(12)
C(14)-C(15)-C(16)-C(24')	-6.4(14)
C(15)-C(16)-C(17)-C(18)	-0.4(11)
C(24)-C(16)-C(17)-C(18)	171.8(14)
C(24')-C(16)-C(17)-C(18)	-176.1(13)
C(16)-C(17)-C(18)-C(19)	1.4(12)
C(16)-C(17)-C(18)-C(27')	-176.8(19)
C(16)-C(17)-C(18)-C(27)	-175.5(12)
C(17)-C(18)-C(19)-C(20)	-2.1(12)
C(27')-C(18)-C(19)-C(20)	176(2)
C(27)-C(18)-C(19)-C(20)	174.9(12)
C(18)-C(19)-C(20)-C(15)	1.8(11)
C(18)-C(19)-C(20)-C(21)	-178.2(7)
C(16)-C(15)-C(20)-C(19)	-0.7(9)
C(14)-C(15)-C(20)-C(19)	-178.9(6)
C(16)-C(15)-C(20)-C(21)	179.3(6)
C(14)-C(15)-C(20)-C(21)	1.1(9)

C(19)-C(20)-C(21)-C(23)	42.2(10)
C(15)-C(20)-C(21)-C(23)	-137.8(8)
C(19)-C(20)-C(21)-C(22)	-83.9(8)
C(15)-C(20)-C(21)-C(22)	96.1(8)
C(17)-C(16)-C(24)-C(25)	76(2)
C(15)-C(16)-C(24)-C(25)	-111.7(19)
C(17)-C(16)-C(24)-C(26)	-45(3)
C(15)-C(16)-C(24)-C(26)	127(2)
C(17)-C(16)-C(24')-C(25')	35(3)
C(15)-C(16)-C(24')-C(25')	-141(2)
C(17)-C(16)-C(24')-C(26')	-96(2)
C(15)-C(16)-C(24')-C(26')	89(2)
C(19)-C(18)-C(27)-C(29)	130(2)
C(17)-C(18)-C(27)-C(29)	-53(3)
C(19)-C(18)-C(27)-C(28)	-95(2)
C(17)-C(18)-C(27)-C(28)	82(2)
C(19)-C(18)-C(27')-C(29')	91(4)
C(17)-C(18)-C(27')-C(29')	-91(4)
C(19)-C(18)-C(27')-C(28')	-130(4)
C(17)-C(18)-C(27')-C(28')	48(5)
N(2)-C(30)-C(31)-C(32)	81.9(8)
N(2)-C(30)-C(31)-C(36)	-99.3(7)
C(36)-C(31)-C(32)-C(33)	-1.5(11)
C(30)-C(31)-C(32)-C(33)	177.1(7)
C(36)-C(31)-C(32)-C(43')	-178.0(11)
C(30)-C(31)-C(32)-C(43')	0.7(13)
C(36)-C(31)-C(32)-C(43)	172.9(19)
C(30)-C(31)-C(32)-C(43)	-8(2)
C(31)-C(32)-C(33)-C(34)	1.2(13)

C(43')-C(32)-C(33)-C(34)	177.4(12)
C(43)-C(32)-C(33)-C(34)	-174.0(16)
C(32)-C(33)-C(34)-C(35)	-0.7(14)
C(32)-C(33)-C(34)-C(40')	179.9(19)
C(32)-C(33)-C(34)-C(40)	167.2(12)
C(33)-C(34)-C(35)-C(36)	0.6(14)
C(40')-C(34)-C(35)-C(36)	-180.0(16)
C(40)-C(34)-C(35)-C(36)	-165.6(13)
C(32)-C(31)-C(36)-C(35)	1.4(10)
C(30)-C(31)-C(36)-C(35)	-177.3(6)
C(32)-C(31)-C(36)-C(37)	-174.0(7)
C(30)-C(31)-C(36)-C(37)	7.3(10)
C(34)-C(35)-C(36)-C(31)	-0.9(12)
C(34)-C(35)-C(36)-C(37)	174.7(8)
C(31)-C(36)-C(37)-C(38)	-96.4(10)
C(35)-C(36)-C(37)-C(38)	88.3(11)
C(31)-C(36)-C(37)-C(39)	135.3(9)
C(35)-C(36)-C(37)-C(39)	-40.0(11)
C(35)-C(34)-C(40)-C(41)	-71(2)
C(33)-C(34)-C(40)-C(41)	122.2(17)
C(35)-C(34)-C(40)-C(42)	51(3)
C(33)-C(34)-C(40)-C(42)	-115.8(17)
C(35)-C(34)-C(40')-C(41')	-46(3)
C(33)-C(34)-C(40')-C(41')	133(3)
C(35)-C(34)-C(40')-C(42')	-169(2)
C(33)-C(34)-C(40')-C(42')	10(3)
C(31)-C(32)-C(43)-C(45)	146(3)
C(33)-C(32)-C(43)-C(45)	-40(4)
C(31)-C(32)-C(43)-C(44)	-85(4)

C(33)-C(32)-C(43)-C(44)	89(3)
C(31)-C(32)-C(43')-C(45')	110.9(18)
C(33)-C(32)-C(43')-C(45')	-65(2)
C(31)-C(32)-C(43')-C(44')	-128.4(17)
C(33)-C(32)-C(43')-C(44')	55(2)
C(1)-C(5)-N(1)-C(4)	-0.1(9)
C(1)-C(5)-N(1)-Pd(1)	176.4(4)
C(3)-C(4)-N(1)-C(5)	-0.3(9)
C(3)-C(4)-N(1)-Pd(1)	-176.9(5)
N(3)-C(46)-N(2)-C(6)	1.2(5)
Pd(1)-C(46)-N(2)-C(6)	-174.7(3)
N(3)-C(46)-N(2)-C(30)	-174.1(5)
Pd(1)-C(46)-N(2)-C(30)	10.0(7)
C(7)-C(6)-N(2)-C(46)	-1.9(6)
C(11)-C(6)-N(2)-C(46)	175.6(6)
C(7)-C(6)-N(2)-C(30)	172.7(6)
C(11)-C(6)-N(2)-C(30)	-9.8(10)
C(31)-C(30)-N(2)-C(46)	-164.1(5)
C(31)-C(30)-N(2)-C(6)	21.7(10)
N(2)-C(46)-N(3)-C(7)	-0.1(5)
Pd(1)-C(46)-N(3)-C(7)	175.8(3)
N(2)-C(46)-N(3)-C(14)	-176.3(4)
Pd(1)-C(46)-N(3)-C(14)	-0.4(7)
C(6)-C(7)-N(3)-C(46)	-1.1(6)
C(8)-C(7)-N(3)-C(46)	-178.7(6)
C(6)-C(7)-N(3)-C(14)	174.6(5)
C(8)-C(7)-N(3)-C(14)	-3.0(10)
C(15)-C(14)-N(3)-C(46)	179.9(5)
C(15)-C(14)-N(3)-C(7)	4.6(8)

Table 8. Hydrogen Symmetry transformations used to generate equivalent atoms bonds [Å and°].

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
C(4)-H(4)Cl(1)	0.93	2.60	3.194(6)	121.9
C(5)-H(5)Cl(2)	0.93	2.70	3.306(6)	123.8
C(14)-H(14A)Cl(1)	0.97	2.91	3.591(6)	128.1

Symmetry transformations used to generate equivalent atoms

VII. X-ray Crystallography Structure of Pd-PEPPSI complex C6

Single crystal XRD Structure for C6

Packed structures

(1)

ORTEP diagrams drawn with 50% ellipsoid probability for non-H atoms of the crystal structure of Pd-PEPPSI complex **C6** determined at 296 K (CCDC Deposit No. 1982273).

(2)

(4) Crystal packing of C6 displaying non-linear interactions

VIII. References

- [1] Q. Deng, Y. Zhang, H. Zhu, T. Tu, Asian J. Org. Chem., 2017, 12, 2364-2368.
- [2] S. Xia, L. -Y. Wang, H. -Z. Sun, H. Yue, X. -H. wang, J. -L. Tan, Y. Wang, D. Hou, X. Y. He, K. -C. Mun, B. P. Kumar, H. Zuo, D. -S. Shin, *Bull. Korean Chem. Soc.*, 2013, 34, 394-398.
- [3] C. Salome, P. Wagner, M. Bollenbach, F. Bihel, J. J. Bourguignon, M. Schmitt, *Tetrahedron*, 2014, 70, 3413-3421.
- [4] S. Blanchard, I. Grig-Alexa, O. -I. Patriciu, A. Fînaru, G. Guillaumet, St. Cerc. St. CICBIA., 2010, 11, 45-65.
- [5] T. Wang, K. Xu, L. Liu, H. Xie, Y. Li, W. -X. Zhao, *Transition Met. Chem.*, 2016, 41, 525-529.

- [6] S. Roy, M. J. Sarma, B. Kashyap, P. Prodeep, *Chem. Commun.*, 2016, **52**, 1170-1173.
- [7] T. B. Bach, A. A. Jensen, J. G. Peterson, T. E. Sorensen, S. D. Volpe, J. Liu, A. R. Blaazer, J. E. van Muilwijk-Koezen, T. Balle, B. Frolund, *Eur. J. Med. Chem.*, 2015, 102, 425-444
- [8] J. A. Forni, M. Brzozowski, J. Tsanaktsidis, G. P. Savage, A. Polyzos, Aus. J. Chem., 2015, 68, 1890-1893.