Supporting information for:

Harvesting greenish blue luminescence in Gold(I) complexes and their application as promising bioactive molecules and cellular bioimaging

agents.

Lis R. V. Favarin^[a], G. B. Laranjeira^[a], Cristiane F. A. Teixeira^[a], Heveline Silva^[b], A. C. Micheletti^[a], Lucas Pizzuti^[a], Amilcar Machulek Júnior^[a], Anderson R. L. Caires^[a], Victor M. Deflon^[c], Rafaela B. P. Pesci^[e], C. N. Lima Rocha^[d], J. R. Correa^[d], L. M. C. Pinto^[a], and Gleison Antônio Casagrande*^[a]

- [a] Grupo de Pesquisa em Síntese e Caracterização Molecular de Mato Grosso do Sul, Instituto de Química, Universidade Federal de Mato Grosso do Sul (Laboratório 2); Av. Senador Filinto Muller, 1555, Campo Grande, MS 79074-460, Brazil.
- [b] Departamento de Química, ICEx, Universidade Federal de Minas Gerais; Belo Horizonte, MG 31270-901, Brazil.
- [c] Instituto de Química de São Carlos, Universidade de São Paulo; Av. Trabalhador São-Carlense, 400, São Carlos, SP 13566-590, Brazil.
- [d] Laboratório de Microscopia e Microanálises, Grupo Quimioterápicos e Sondas Fluorescentes, Instituto de Ciências Biológicas, Universidade de Brasília; Av. L3 Norte, s.n., Campus Darcy Ribeiro, Brasília, DF 70910-900, Brazil.
- [e] Departamento de Química, Universidade Federal da Paraíba UFPB, 58051-900 João
 Pessoa PB, Brazil.

^{*}Corresponding author. Tel. +55 67 3345 3595; fax +55 67 3345 7190; e-mail addresses: <u>gleisoncasag@gmail.com</u>, <u>gleison.casagrande@ufms.br</u>

Compound	1	2	3	
Empirical formula	C ₃₆ H ₃₆ AuF ₆ N ₃ OP ₂ S	C35H34AuF6N3OP2S	$C_{36}H_{36}AuO_2N_3SP_2F_6$	
Formula weight	931.64	917.62	947.70	
Temperature (K)	296(2)	296(2)	296(2)	
Radiation, λ (Å)	0.71073	0.71073	0.71073	
Crystal system	Monoclinic $(P2_1/n)$	Monoclinic $(P2_1/n)$	Monoclinic $(P2_1/n)$	
Unit cell dimensions				
a (Å)	15.6260(6)	15.5446(3)	15.730(4)	
<i>b</i> (Å)	15.1781(6)	14.8994(3)	14.896(5)	
<i>c</i> (Å)	16.3393(6)	16.1594(4)	16.543(5)	
α (°)	90.000(0)	90.000(0)	90.000(0)	
β (°)	104.658(2)	105.9130(10)	105.515(10)	
γ (°)	90.000(0)	90.000(0)	90.000(0)	
Volume (Å ³)	3749.1(2)	3599.18(13)	3734.8(19)	
Z / density calculated (g cm ⁻³)	4/1.651	4/1.693	4/1.402	
Absorption coefficient	1 1 2 9	1 208	4 097	
(mm ⁻¹)	4.120	4.270	4.067	
<i>F</i> (000)	1840	1808	1528	
Crystal size (mm)	$0.41 \times 0.18 \times 0.18$	$0.82 \times 0.56 \times 0.28$	$0.22 \times 0.22 \times 0.14$	
Range for data collection, θ	1 96 to 26 12	$1.61 \pm 0.26.41$	2 405 4- 20 176	
(°)	1.80 10 20.42	1.01 to 20.41	2.495 10 50.170	
Index ranges	$-19 \le h \le 19$	$-16 \le h \le 19$	$-22 \le h \le 22$	
	$-18 \le k \le 18$	$-15 \le k \le 18$	$-20 \le k \le 20$	
	$-20 \le 1 \le 20$	$-16 \le 1 \le 20$	$-22 \le 1 \le 23$	
Reflections collected	28644	27388	53312	
Independent reflections	7690[R(int) =	7382[R(int) = 0.0364]	10998[R(int) =	
1	0.0244]	[0.04081	
Completeness to θ_{max}	99.7%	99.9 %	99.7%	
Absorption correction	Multi-scan	Multi-scan	Multi-scan	
Data/restraints/parameters	7690 / 0 / 518	7382 / 36 / 444	10998 / 0 / 460	
Goodness-of-fit, F^2	1.019	1 027 1 03		
Final R indices $(I > 2\sigma(I))$	$R_1 = 0.0254$	$R_1 = 0.0302$	$R_1 = 0.0405$	
	$w\dot{R}_2 = 0.0670$	$w\dot{R}_2 = 0.0720$	$wR_2 = 0.0980$	
<i>R</i> indices (all data)	$R_1 = 0.0333$	$R_1 = 0.0391$	$R_1 = 0.0732$	
	$wR_2 = 0.0718$	$wR_2 = 0.0756$	$wR_2 = 0.1122$	
Largest peak-and-hole difference $(a \ ^{A^{-3}})$	1.192 and –0.694	0.921 and -0.875	1.021 and -0.644	

Table S1. Crystal data and structure refinement for complexes $1,\,2$ and 3

* $R_1 = |F_0 - F_c|/|F_0|$; w $R_2 = [w(F_0^2 - F_c^2)^2/(wF_0^2)]^{-1/2}$

Figure S1. Crystalline structure of **2**. Hydrogen atoms, PF_6 anion, and methanol solvate omitted for clarity. Thermal ellipsoids drawn at a 50% probability level.

Figure S2. Crystalline structure of **3**. Hydrogen atoms, PF_6 anion, and methanol solvate omitted for clarity. Thermal ellipsoids drawn at a 50% probability level.

	Complex 1	Complex 2	Complex 3
Distances (Å)			
P(1)-Au(1)	2.2729(8)	2.2680(9)	2.2600(12)
S(1)-Au(1)	2.3053(8)	2.3018(9)	2.2950(12)
C(17)-S(1)	1.724(3)	1.719(4)	1.721(4)
C(17)-(N1)	1.331(4)	1.329(4)	1.326(5)
C(17)-N(3)	1.309(4)	1.314(5)	1.303(5)
N(1)-N(2)	1.410(3)	1.409(4)	1.406(4)
Angles (°)			
P(1)-Au(1)-S(1)	169.83(3)	169.63(4)	170.64(4)

Table S2. Selected bond distances (Å) and bond angles (°) for complexes 1, 2 and 3.

Figure S3. Experimental (solid line) and calculated (dashed line) absorption spectra of complex **3**.

Figure S4. Dichloromethane solution $(1.0 \times 10^{-5} \text{ M})$ of complex **3**. Left: under natural light; right: with 306 nm (UV) passing through solution. Complexes **1** and **2** exhibited similar behavior.

Figure S5. Excitation and emission spectra of complex 1 measured in CH_2Cl_2 solution ($\approx 1.0 \times 10^{-5}$ M) at 298 K ($\lambda_{ex} = 305$ nm).

Figure S6. Excitation and emission spectra of complex 2 measured in CH₂Cl₂ solution ($\approx 1.0 \times 10^{-5}$ M) at 298 K ($\lambda_{ex} = 300$ nm).

Figure S7. Confocal fluorescence microscopy images of MCF-7 cells stained with 1. Images A, B and C live cells, imagens D, E and F fixed cells. The complex 1 have dual fluorescence emission, green ($\lambda_{exc} = 405$ nm) showed in images B and E and blue ($\lambda_{exc} = 305$ nm) showed in imagens C and F. The fluorescence was distributed into the cells cytoplasm (white arrow). The cells nuclei were not stained by this compound, which are showed as black voids in the cells. Images A and D show the normal cells morphology by phase contrast microscopy. Reference scale bar = 75 µm.

Figure S8. Confocal fluorescence microscopy images of MCF-7 cells stained with **2**. Images A, B and C live cells, imagens D, E and F fixed cells. The complex **2** presented dual fluorescence emission, green ($\lambda_{exc} = 405$ nm) showed in images B and E and blue ($\lambda_{exc} = 305$ nm) showed in imagens C and F. The fluorescence was distributed into the cells cytoplasm (white arrow). The fluorescent signal was less intense to those observed in cell stained with **2**. The cells nuclei were not stained by this compound, which are showed as black voids in the cells. Images A and D show the normal cells morphology by phase contrast microscopy. Reference scale bar = 75 µm.

Figure S9. Infrared spectrum of ligand 1.

Figure S10. Infrared spectrum of ligand **2**.

Figure S11. Infrared spectrum of ligand **3**.

Figure S12. Infrared spectrum of complex 1.

Figure S13. Infrared spectrum of complex 2.

Figure S14. Infrared spectrum of complex 3.

Vibrational frequency (cm ⁻¹)										
	[Ph ₃ PAuCl]	Ligand	Ligand	Ligand	Complex	Complex	Complex			
		1	2	3	1	2	3			
ν(N-H)	_	3393-3155	3484-3350	3337-3169	3586-3190	3580-3414	3580-3414			
ν (C-H) _{Ar}	3062	3025	3048	3050	3058	3055	3061			
ν(C-H)	_	2917	NO	2956	2836	2836	2843			
$v(C=C)_{Ar}$	1480-1384	1467	1472	1471	1532	1531	1533			
v(C=N)	_	1578	1575	1617	1591	1593	1593			
v(C=S)	_	1365	1364	1380	1396	1396	1397			
δ(C-H)	990-750	990-750	990-750	990-750	990-760	990-760	990-760			
v(P-F)	-	_	_	_	841	837	841			
v(C-P)	1098	-	-	-	1102	1103	1103			
$\delta(\text{C-H})_{\text{Ar}}$	748	691	689	685	689	690	689			
v(C-O-CH ₃)	_	-	_	1250	_	_	1250			
ν(O-H)	_	-	-	-	3586	3590	3580			

Table S3. Modes and vibrational frequencies of the precursor, ligands and complexes.

NO: not observed.

Complex **1**. 1H NMR (300 MHz, CDCl3) δ 7.82-7.79 (m, 2H, Ar), 7.76 (bs, 1H, NH), 7.55-7.44 (m, 18H, Ar), 7.26-7.07 (m, 5H, Ar + NH), 5.75 (dd, J = 11.0, 3.5 Hz, 1H), 3.99 (dd, J = 18.0, 11.0 Hz, 1H), 3.31 (dd, J = 18.0, 3.6 Hz, 1H). 2.31 (s, 3H, CH3).

ex 1. 13C NMR (75 MHz, CDCl3) δ 169.3, 165.4, 161.3, 137.7 (d, JC-P = 96.8 Hz), 134.2 (d, JC-P = 12.9 Hz), 132.6, 132.3, 130.0, 130.0 (d, JC-P = 13.9 Hz), 129.3, 129.2, 128.0, 127.2, 125.5,

64.4, 44.4, 21.3.

Complex **2**. 1H NMR (300 MHz, CDCl3) δ 7.80-7.78 (m, 2H, Ar), 7.74 (bs, 1H, NH), 7.58-7.41 (m, 18H, Ar), 7.35-7.26 (m, 3H, Ar), 7.18-7.16 (m, 2H, Ar), 7.04 (bs, 1H, NH), 5.77 (dd, J = 11.0, 3.6 Hz), 4.02 (dd, J = 18.2, 11.0 Hz), 3.31 (dd, J = 18.1, 3.4 Hz).

Complex **2**. 13C NMR (75 MHz, CDCl3) δ 169.3, 161.4, 140.0, 134.3, 134.1, 132.6, 132.4, 129.9, 129.8, 129.5, 129.2, 128.6, 128.1, 125.6, 64.7, 44.4.

Complex **3**. 1H NMR (300 MHz, CDCl3) δ 7.80-7.77 (m, 2H, Ar), 7.71 (bs, 1H, NH), 7.56-7.40 (m, 18H, Ar), 7.10-7.08 (m, 2H, Ar), 6.98 (bs, 1H, NH), 6.84-6.81 (m, 2H, Ar), 5.71 (dd, J = 11.0, 3.6 Hz, 1H), 3.97 (dd, J = 18.2, 11.0 Hz, 1H), 3.74 (s, 3H, OCH3), 3.28 (dd, J = 18.2, 3.6 Hz, 1H).

Complex **3**. 13C NMR (75 MHz, CDCl3) δ 169.1, 161.6, 159.7, 134.3, 134.1, 132.6, 132.3, 132.1, 129.9, 129.7, 129.2, 128.0, 127.0, 114.7, 64.3, 55.4, 44.4.