Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Template assisted Synthesis of Ni, N co-doped Porous Carbon from Ni Incorporated ZIF-8 Frameworks for Electrocatalytic Oxygen Reduction Reaction

Vaishna Priya K.^{ab} , Minju Thomas^{ab}, Rajith Illathvalappil^c, Shijina K.^{ab} , Sreekumar Kurungot^c, Balagopal N. Nair^{de}, A. Peer Mohamed^a, Gopinathan M. Anilkumar^{df}, Takeo Yamaguchi^f, and U. S. Hareesh^{ab*}

^{a.} Materials Science and Technology Division (MSTD), National Institute for Interdisciplinary Science and Technology, Council of Scientific and Industrial Research (CSIR-NIIST), Pappanamcode, Thiruvananthapuram, Kerala 695019, India

^b Academy of Scientific and Innovative Research (AcSIR), CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) Campus, Thiruvananthapuram, Kerala 695 019, India

^c Physical and Materials Chemistry Division, CSIR–National Chemical Laboratory, Pune, Maharashtra, India 411008

^d R&D Centre, Noritake Company LTD, 300 Higashiyama, Miyoshi, Aichi 470-0293, Japan

e School of Molecular and Life Sciences (MLS), Faculty of Science and Engineering, Curtin University, GPO Box U1987, Perth, Western Australia 6845, Australia

^f Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta 4259, Midori-ku, Yokohama 226-8503, Japan

Table of contents

Fig. S1	PXRD pattern of Ni-Methylimidazolate complex	S2
Fig. S2	FTIR spectra of samples	S2
Fig. S3	TGA curves of ZIF-8, NiZ(1:2) and NiZC(1:2)	S3
Fig. S4	N_2 adsorption-desorption isotherms of carbon samples obtained at 800 $^\circ\text{C}$ and 900 $^\circ\text{C}$	S 3
Table S1	Surface areas and pore volumes of samples after carbonization at 800 $^\circ\mathrm{C}$ and 900 $^\circ\mathrm{C}$	S4
Fig. S5	LSV curves of all the ZIF-8 derived carbon samples and compared LSV	
	curves of carbon samples obtained after carbonisation at 1000 °C	S4
Fig. S6	TEM image of ZIF-8, NiZ and NiZC samples	S5
Fig. S7	TEM images of carbonised samples with various morphologies	S5
Table S2	Distribution of various elements in samples obtained from SEM-EDS data	S6
Table S3	Distribution of various elements in NiZC(1:2) T samples obtained from SEM-EDS data	S6
Fig. S8	XPS deconvoluted spectra of Z 1000 sample	S6
Fig. S9	XPS deconvoluted spectra of NiZ(1:2) 1000 sample	S7
Table S4	Distribution of various types of nitrogen in carbon samples obtained from XPS deconvoluted spectrum	S7
Fig. S10	LSV curves of Z 1000 and NiZ(1:2) 1000 under different rotation rates	S8
Fig. S11	Methanol tolerance curves of NiZC(1:2) and Pt/C	S8
Fig. S12	Photographs of powder samples before carbonisation	S 9
Table S5.	Comparison of ORR performance of Ni incorporated catalysts	S 9

Fig. S1. PXRD pattern of Ni-methylimidazolate complex

Fig. S2. FT-IR spectra of a) ZIF-8, NiZ, NiZC and Ni-Imidazolate complex b) Carbonised ZIF-8, NiZ and NiZC at 1000 °C

Fig. S3. TGA curves of ZIF-8, NiZ(1:2) and NiZC(1:2)

Fig. S4. N₂ adsorption- desorption isotherms of carbon samples obtained at a) 800 °C and b) 900 °C

Sample	After carbonization					
	800 °C			900 °C		
	S _{BET}	V_{total}	V _{micro}	S _{BET}	V_{total}	V _{micro}
	(m ² /g)	3 (cm /g)	3 (cm /g)	2 (m /g)	3 (cm /g)	3 (cm /g)
Z (ZIF-8)	453	0.35	0.20	751	0.82	0.27
NiZ(1:2)	252	0.23	0.11	644	1.06	0.26
NiZ(1:1)	339	3.2	0.1	449	0.45	0.09
NiZC(1:2)	338	0.75	0.12	337	2.29	0.1
NiZC(1:1)	271	1.18	0.08	314	1.74	0.1

Table S1. Surface areas and pore volumes of samples after carbonization at 800 °C and 900 °C

Fig. S5. a) LSV curves of ZIF-8 derived carbon samples obtained after carbonisation at different temperatures b) Compared LSV curves of carbon samples obtained after carbonisation at 1000 °C with Pt/C in O_2 saturated 0.1 M KOH solution under 1600 rpm

Fig. S6. TEM image of a) ZIF-8, b) NiZ (1:2) and c) NiZC (1:2) samples

Fig. S7. TEM images of ; a) NiZC(1:2) 800, b) NiZC(1:2) 900, c) NiZC(1:2) 1000, d) NiZC(1:1) 800, e) NiZC(1:1) 900 f) NiZC(1:1) 1000 and g) NiZ(1:1) 800 with various morphologies

Sample name		Elemental distribution				
		(Atomic %)				
	C	Ν	Ni	Zn		
NiZ(1:2)	62.02	32.85	0.04	5.09		
NiZC(1:2)	40.63	58.11	0.01	1.25		
Z 1000	79.01	20.26				
NiZ(1:2) 1000	80.07	19.71	0.22			
NiZC(1:2) 1000	71.89	27.90	0.21			

Table S2. Distribution of various elements in samples obtained from SEM-EDS data

Table S3. Distribution of various elements in NiZC(1:2) T samples obtained from SEM-EDS data

Sample name	Elemental distribution			
	(Atomic %)			
	С	Ν	Ni	
NiZC(1:2) 800	51.50	48.24	0.26	
NiZC(1:2) 900	67.77	31.85	0.38	
NiZC(1:2) 1000	71.89	27.90	0.21	

Fig. S8. XPS deconvoluted spectra a) C1s, and b) N1s of Z 1000 sample

Fig. S9. XPS deconvoluted spectra of a) C1s, b) N1s, and c) Ni 2p of NiZ(1:2) 1000 sample

Table S4. Distribution of various types of nitrogen in Z 1000, NiZ(1:2) 1000 and NiZC(1:2) 1000 samples obtained from XPS deconvoluted spectrum

Sample name	N content (At %)					
	Pyridinic	Pyrrolic	Graphitic	Pyridinic	-NO ₂	
				N-O		
Z 1000	6.431	0.286	1.281			
NiZ(1:2) 1000	1.946	0.771	1.546	1.161	0.473	
NiZC(1:2) 1000	4.743	0.43	2.571	1.454		

Fig. S10. LSV curves of a) Z 1000 and b) NiZ(1:2) 1000 under different rotation rates in O₂ saturated 0.1 M KOH solution.

Fig. S11. Methanol tolerance curves of NiZC(1:2) and Pt/C

Fig. S12. Photographs of a) ZIF-8, b) NiZ, c) NiZC and d) Ni-methylimidazolate complex powder samples

Table S5. Cor	nparison of ORR	performance of	Ni incorporated	catalysts with	recent literatures

Sample name	Onset	Half wave	Current desity (mA cm ⁻²)	Electron transfer number	reference
Ni@N-CNCs	0.04 V (vs Ag/AgCl)	-0.19 V(Vs Ag/AgCl)	-4.8	4.0	[71]
Ni₃(HITP)₂ framework	0.82 V (vs. RHE),o.1 M aq. KOH		-2.5		[72]
NCNTs/ E-NNPs	0.96 V (vs. RHE), 0.1 M KOH	0.86V (vs. RHE)	-3.8	3.7	[73]
Ni-NC700	0.86 V (vs. RHE), 0.1 M KOH	0.75 V (vs. RHE), 0.1 M KOH	-2.2		[27]
Ni/ rGO	0.80 V (vs. RHE), 0.1 M KOH	0.60V	-4.6	≈2.8	[74]
Ni-GT-750-A	0.89 V (vs. RHE,.1 M KOH		-3.90		[28]
NiZC(1:2) 1000	0.86 V (vs. RHE),.1 M KOH	0.76 V	-5.2	3.8	[Present work]