Synchronous role of coupled adsorption and photocatalytic oxidation on hybrid nanomaterials of pectin and nickel ferrite generating excellent removal efficiency for toxic dye effluents

Kanu Gupta^a, Komal^a, Nidhi^a, K.B. Tikoo^b, Vinod Kumar^b, Sandeep Bansal^c, Anupama Kaushik^{d*} and Sonal Singhal^{a*}

Supplementary information

Fig. S1 Powder XRD pattern of bare pectin

Fig.S2 $(\alpha h\nu)^2 vs. h\nu$ curves (Tauc plots) of bare NiFe and P-NiFe nanocomposites

Fig.S3 Control experiments for the photo catalytic degradation of RB5 using NiFe as a catalyst where conditions are (a) Dye+ light, (b) Dye+ H_2O_2 , (c) Dye+light+ferrite, (d) Dye+light+ H_2O_2 and (e) Dye+light+ H_2O_2 +Ferrite

Fig.S4 Effect of catalyst loading on the degradation of (a) MB and (b) RB5 using NiFe as catalyst (Reaction Conditions: [Dye]= 0.05 mM, $[H_2O_2]= 8.8 \text{ mM}$ and pH= 2.5)

Dye concentration (mM)

Fig.S5 Effect of dye concentration on the degradation of (a) MB and (b) RB5 using NiFe as catalyst (Reaction Conditions: $[NiFe] = 0.50 \text{ g/L}, [H_2O_2] = 8.8 \text{ mM} \text{ and } pH = 2.5)$

Fig.S6 Effect of solution pH on the degradation of (a) MB and (b) RB5 using NiFe as catalyst (Reaction Conditions: [NiFe] = 0.50 g/L, [Dye] = 0.05 mM and $[H_2O_2] = 8.8 \text{ mM}$)

Fig.S7 A_t/A_0 graph *vs.* time (a) and $\ln A_t/A_0$ graph *vs.* time (b) for degradation of MB and RB5 dye using NiFe as catalyst. (Reaction Conditions: [Dye]= 0.05mM, [NiFe]= 0.50 g/L, [H₂O₂]= 8.8 mM and pH= 2.5)

Fig. S8 % Adsorption *vs.* time curves for MB dye and RB5 dye using bare pectin powder (Reaction Conditions: [Pectin]= 0.50 g/L, [Dye]= 0.05mM)