Supporting Information

All-nitrogen ions based compounds as energetic oxidizers: A theoretical

study on $[N_5^+][NO_3^-]$, $[N_5^+][N(NO_2)_2^-]$, $[NO_2^+][N_5^-]$ and $NO_2^-N_3$

Qi Sun, Pengcheng Wang, Qiuhan Lin, Ming Lu*a

A: School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China

Table s1 Calculated heat of formation of four ions and the lattice energy of $[NO_2^+][N_5^-]$ and $[N_5^+][NO_3^-]$

Compd	ΔH_{cation}^{a}	$\Delta H_{anion}{}^{b}$	ΔH_L^c	
	[kJ mol ⁻¹]	[kJ mol ⁻¹]	[kJ mol ⁻¹]	
[NO ₂ ⁺][N ₅ ⁻]	980.3	258.7	607.0	
[NO ₃ ⁻][N ₅ ⁺]	1471.7	-307.9	581.7	
[N ₅ ⁺][N(NO ₂) ₂ ⁻]	1471.7	-190.1	543.8	
^a heats of formation of cations; ^b heats of formation of anions; ^c the lattice energy				

Distributions of electrostatic potentials

Begin	End	Center	Area	%
-40.0000	-35.0000	-37.5000	3.6620	2.5454
-35.0000	-30.0000	-32.5000	14.5226	10.0943
-30.0000	-25.0000	-27.5000	10.9467	7.6088
-25.0000	-20.0000	-22.5000	7.9799	5.5467
-20.0000	-15.0000	-17.5000	5.9355	4.1256
-15.0000	-10.0000	-12.5000	5.6653	3.9378
-10.0000	-5.0000	-7.5000	5.9265	4.1193
-5.0000	0.000	-2.5000	6.5790	4.5729
0.000	5.0000	2.5000	6.9441	4.8267
5.0000	10.0000	7.5000	7.8200	5.4355
10.0000	15.0000	12.5000	13.7570	9.5621
15.0000	20.0000	17.5000	11.5903	8.0562
20.0000	25.0000	22.5000	9.9659	6.9270
25.0000	30.0000	27.5000	8.8882	6.1780
30.0000	35.0000	32.5000	9.2091	6.4010
35.0000	40.0000	37.5000	6.6890	4.6494
40.0000	45.0000	42.5000	5.1383	3.5715
45.0000	50.0000	47.5000	2.6497	1.8418
um:			143.8691	100.0000

Figure s1. Distributions of electrostatic potentials of [N5+][NO3-]

Begin	End	Center	Area	Ζ.
-40.0000	-35.0000	-37.5000	1.3326	0.7624
-35.0000	-30.0000	-32.5000	8.9478	5.1188
-30.0000	-25.0000	-27.5000	22.5496	12.9000
-25.0000	-20.0000	-22.5000	11.9280	6.8236
-20.0000	-15.0000	-17.5000	9.8591	5.6401
-15.0000	-10.0000	-12.5000	8.4139	4.8134
-10.0000	-5.0000	-7.5000	7.1274	4.0774
-5.0000	0.000	-2.5000	5.7570	3.2934
0.0000	5.0000	2.5000	4.7123	2.6958
5.0000	10.0000	7.5000	4.2461	2.4291
10.0000	15.0000	12.5000	10.3182	5.9028
15.0000	20.0000	17.5000	17.4149	9.9626
20.0000	25.0000	22.5000	21.3787	12.2302
25.0000	30.0000	27.5000	13.5481	7.7505
30.0000	35.0000	32.5000	8.4247	4.8196
35.0000	40.0000	37.5000	6.7878	3.8831
40.0000	45.0000	42.5000	5.9606	3.4099
45.0000	50.0000	47.5000	5.3564	3.0642

Figure s2. Distributions of electrostatic potentials of [N5+][N(NO2)2-]

occ. moa a		JOCION 2		
Begin	End	Center	Area	%
-40.0000	-35.0000	-37.5000	0.0000	0.000
-35.0000	-30.0000	-32.5000	0.0000	0.000
-30.0000	-25.0000	-27.5000	0.0000	0.000
-25.0000	-20.0000	-22.5000	0.8491	0.6925
-20.0000	-15.0000	-17.5000	6.8364	5.5757
-15.0000	-10.0000	-12.5000	10.3083	8.4074
-10.0000	-5.0000	-7.5000	15.8050	12.8904
-5.0000	0.0000	-2.5000	27.2180	22.1987
0.0000	5.0000	2.5000	16.6301	13.5634
5.0000	10.0000	7.5000	10.4498	8.5227
10.0000	15.0000	12.5000	7.4615	6.0855
15.0000	20.0000	17.5000	5.7256	4.6697
20.0000	25.0000	22.5000	4.6978	3.8315
25.0000	30.0000	27.5000	4.2584	3.4731
30.0000	35.0000	32.5000	5.0662	4.1319
35.0000	40.0000	37.5000	4.0097	3.2703
40.0000	45.0000	42.5000	2.2499	1.8350
45.0000	50.0000	47.5000	1.0449	0.8522
um:			122.6106	100.0000

Figure s3. Distributions of electrostatic potentials of [NO2+][N5-].

3				
Note: Area u	nit is in Ang	strom^2		
Begin	End	Center	Area	%
-40.0000	-35.0000	-37.5000	0.0000	0.0000
-35.0000	-30.0000	-32.5000	0.0000	0.0000
-30.0000	-25.0000	-27.5000	0.0000	0.0000
-25.0000	-20.0000	-22.5000	0.0000	0.0000
-20.0000	-15.0000	-17.5000	9.9342	9.3938
-15.0000	-10.0000	-12.5000	15.6436	14.7928
-10.0000	-5.0000	-7.5000	12.2124	11.5482
-5.0000	0.0000	-2.5000	7.7741	7.3512
0.000	5.0000	2.5000	12.4493	11.7722
5.0000	10.0000	7.5000	11.0341	10.4339
10.0000	15.0000	12.5000	10.0869	9.5383
15.0000	20.0000	17.5000	7.6175	7.2032
20.0000	25.0000	22.5000	6.7251	6.3593
25.0000	30.0000	27.5000	8.5203	8.0569
30.0000	35.0000	32.5000	3.7542	3.5500
35.0000	40.0000	37.5000	0.0000	0.0000
40.0000	45.0000	42.5000	0.0000	0.0000
45.0000	50.0000	47.5000	0.0000	0.0000
Sum:			105.7517	100.0000

Figure s4. Distributions	of electrostatic potentials	of NO2-N3 (N4O2).
--------------------------	-----------------------------	-------------------

Begin	End	Center	Area	%
-40.0000	-35.0000	-37.5000	0.0000	0.0000
-35.0000	-30.0000	-32.5000	0.0000	0.0000
-30.0000	-25.0000	-27.5000	0.0000	0.0000
-25.0000	-20.0000	-22.5000	0.0000	0.0000
-20.0000	-15.0000	-17.5000	0.000	0.000
-15.0000	-10.0000	-12.5000	0.1732	0.1522
-10.0000	-5.0000	-7.5000	28.5648	25.1099
-5.0000	0.000	-2.5000	33.1091	29.1046
0.0000	5.0000	2.5000	14.8749	13.0758
5.0000	10.0000	7.5000	9.2337	8.1169
10.0000	15.0000	12.5000	6.9760	6.1322
15.0000	20.0000	17.5000	5.4911	4.8270
20.0000	25.0000	22.5000	4.7634	4.1872
25.0000	30.0000	27.5000	4.5678	4.0154
30.0000	35.0000	32.5000	5.3126	4.6701
35.0000	40.0000	37.5000	0.6923	0.6085
40.0000	45.0000	42.5000	0.0000	0.0000
45.0000	50.0000	47.5000	0.0000	0.000
ium:			113.7588	100.0000

Figure s5. Distributions of electrostatic potentials of N2O5.

Figure s6 Ionic $[NO_2^+][N_5^-]$ or covalent NO_2 - N_5

Figure s7 Comparison of the NO_2 - N_3 structures.