## AgNO<sub>3</sub>-Catalyzed Decarboxylative Cross-coupling Reaction: An Approach to Coenzyme Q

Wan-Yue Luoa#, Bin Lua#, Yong-Fu Qiua#, Rong-Ye Zhoua, Yong-Jing Hea, Jin Wanga

<sup>a.</sup> School of Pharmacy, Yancheng Teachers University, Hope Avenue South Road No.2, Yancheng, 224007, Jiangsu Province, P. R. China <sup>b.</sup> Université de Toulouse, Université Toulouse III – Paul Sabatier, 118 route de Narbonne, 31062 Toulouse Cedex 9, France

## **Experimental Procedures**

All reactions were monitored by TLC (SiO<sub>2</sub>, petrol ether/EtOAc 5:1), Melting points were measured on Melting Point M-565 (BUCHI). NMR and mass spectra were recorded on a Bruker Avanc III-HD 400 NMR and a TripleTOF Mass spectrometers, respectively. All reagents: e.g. Potassium Persulfate ( $(K_2S_2O_8)$ , Ammonium persulphate ( $(NH_4)_2S_2O_8$ ) were purchased from Adamas, P. R. China, and used without further purification.

Table 1. Control experiments

|       | CoQ <sub>0</sub> | $\frac{\text{catalyst, oxidant, air}}{\text{HOOC}-(\text{CH}_2)_2 \text{CH}_3}$ |                    | (CH <sub>2</sub> ) <sub>2</sub> CH <sub>3</sub> |
|-------|------------------|---------------------------------------------------------------------------------|--------------------|-------------------------------------------------|
| Entry | Oxidant          | Catalyst                                                                        | Solvent            | Yield (%)                                       |
| 1     | $K_2S_2O_8$      | Ag <sub>2</sub> CO <sub>3</sub>                                                 | CH <sub>3</sub> CN | 10                                              |
| 2     | $K_2S_2O_8$      | $Ag_2O$                                                                         | CH <sub>3</sub> CN | 8                                               |
| 3     | $K_2S_2O_8$      | AgOAc                                                                           | CH <sub>3</sub> CN | 14                                              |
| 4     | $(NH_4)_2S_2O_8$ | AgNO <sub>3</sub>                                                               | CH <sub>3</sub> CN | 25                                              |
| 5     | $H_2O_2$         | AgNO <sub>3</sub>                                                               | CH <sub>3</sub> CN | 0                                               |
| 6     | TBHP             | AgNO <sub>3</sub>                                                               | CH <sub>3</sub> CN | trace                                           |
| 7     | TBPB             | AgNO <sub>3</sub>                                                               | CH <sub>3</sub> CN | 12                                              |
| 8     | DTBP             | AgNO <sub>3</sub>                                                               | CH <sub>3</sub> CN | trace                                           |
| 9     | TBPB             | Bi(OTf) <sub>3</sub>                                                            | CH <sub>3</sub> CN | 0                                               |
| 10    | TBPB             | $Cu(OAc)_2$                                                                     | CH <sub>3</sub> CN | trace                                           |
| 11    | TBPB             | $Pd(OAc)_2$                                                                     | CH <sub>3</sub> CN | trace                                           |

Reaction Conditions: **CoQ**<sub>0</sub> (0.02 mol), butanoic acid (1.2 equiv), Catalyst 40%, Oxidant 2 equiv (DTBP: *di*-tertbutyl peroxide. TBHP=*tert*-butyl hydroperoxide, TBPB=*tert*-butyl peroxybenzoate). 80 °C, 4h

Synthesis of CoQ compounds

To a solution of Coenzyme  $Q_0$  (3.64 g, 0.02 mol) and carboxylic acids (0.03mol) in acetonitrile 80 mL was added AgNO<sub>3</sub> (1.35 g, 8 mmol). The mixture was heated to 80 °C and a solution of K<sub>2</sub>S<sub>2</sub>O<sub>8</sub> (10.81 g, 0.04 mol) in distilled water 80 mL was added dropwise over 2 h, then the reaction mixture was stirred for another 2 h, with TLC monitoring unitil the starting material was consumed. The resulting mixture was cooled and extracted with CH<sub>2</sub>Cl<sub>2</sub>. The organic layer was washed with water, then dried over anhydrous Na<sub>2</sub>SO<sub>4</sub> and evaporated under reduced pressure. The residue was purified by column chromatograph on silica gel (PE/EtOAc= 5:1) to give CoQ compounds.

Compound 3, red oil;

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 3.99 (s, 3H, OCH<sub>3</sub>), 3.98 (s, 3H, OCH<sub>3</sub>), 2.45 (t, 2H, *J* = 8.0 Hz, CH<sub>2</sub>), 2.02 (s, 3H, CH<sub>3</sub>), 1.39-1.49 (m, 2H, CH<sub>2</sub>), 0.96 (t, *J* = 8.0 Hz, 3H, CH<sub>3</sub>).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 184.7 (C=O), 184.2 (C=O), 144.3, 144.2, 142.8, 138.9, 61.2(OCH<sub>3</sub>), 28.3, 22.1, 14.3, 11.9 (CH<sub>3</sub>).

Compound 4, red oil;

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ4.00 (s, 3H, OCH<sub>3</sub>), 3.99 (s, 3H, OCH<sub>3</sub>), 2.45 (t, 2H, *J* = 8.0 Hz, CH<sub>2</sub>), 2.01 (s, 3H, CH<sub>3</sub>), 1.15-1.45 (m, 14H, CH<sub>2</sub>), 0.88 (t, *J* = 8.0 Hz, 3H, CH<sub>3</sub>).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 184.7 (C=O), 184.2 (C=O), 144.3, 144.2, 143.1, 138.6, 61.2 (OCH<sub>3</sub>), 31.9, 29.8, 29.5, 29.4, 29.3, 28.7, 26.4, 22.7, 14.1, 11.9 (CH<sub>3</sub>).

Compound **5**, red oil<sup>[1]</sup>;

<sup>1</sup>H NMR (400MHz, CDCl<sub>3</sub>) δ 3.91 (s, 6H, OCH<sub>3</sub>), 3.55 (t, *J* = 8.0Hz, 2H, CH<sub>2</sub>OH), 2.52 (s, 1H, OH), 2.36 (t, *J* = 8.0Hz, 2H), 2.00 (s, 3H, CH<sub>3</sub>), 1.48(t, *J* = 8.0Hz, 2H), 1.10-1.45 (m, 14H).

<sup>13</sup>CNMR (100MHz, (CD<sub>3</sub>)<sub>2</sub>CO) δ 184.5 (C=O), 183.9 (C=O), 144.0, 142.8(2C), 138.5, 62.6(OCH<sub>3</sub>), 60.9(OCH<sub>3</sub>), 32.5, 29.6, 29.2, 29.1, 29.0, 28.5, 26.2, 25.5, 11.7 (CH<sub>3</sub>).

Idebenone (compound 6), red solid, m.p. 53-55 °C (Lit. <sup>[2]</sup> 52-54 °C).

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 4.00 (s, 3H, OCH<sub>3</sub>),3.99 (s,3H, OCH<sub>3</sub>), 3.62-3.66 (m, 2H, CH<sub>2</sub>), 2.45 (t, 2H, *J* = 8.0 Hz, CH<sub>2</sub>), 2.01 (s, 3H, CH<sub>3</sub>), 1.61 (s,1H,OH), 1.59-1.52 (m, 2H), 1.42-1.22 (m, 14H); <sup>13</sup>CNMR (100 MHz, CDCl<sub>3</sub>) δ 184.7 (C=O), 184.2 (C=O), 144.3, 144.2, 143.1, 138.7, 63.1(OCH<sub>3</sub>), 61.2(OCH<sub>3</sub>), 32.8, 29.8, 29.5, 29.4, 29.3, 28.7, 26.4, 25.7, 11.9 (CH<sub>3</sub>).

## References

- [1] J. Wang, S. Li, T. Yang and J. Yang, European Journal of Medicinal Chemistry, 2014, 86, 710-713
- [2] J. Wang, S. Li, T. Yang and J. Yang, Tetrahedron, 2014, 70, 9029-9032.





<sup>1</sup>H NMR spectrum of compound **4** 



<sup>13</sup>C NMR spectrum of compound **4** 



<sup>1</sup>H NMR spectrum of compound **5** 



<sup>13</sup>C NMR spectrum of compound **5** 



