Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

## A zinc<sup>2+</sup>-dpbt framework: a luminescence sensing of Cu<sup>2+</sup>, Ag<sup>+</sup> MnO<sub>4</sub><sup>-</sup> and Cr(VI) (Cr<sub>2</sub>O<sub>7</sub><sup>2-</sup> and CrO<sub>4</sub><sup>2-</sup>) ions $\dagger$

Yan Cao, a Yan Zhang, a Liang-wei Gu, a Xing-mei Qin, a Hai-Ye Li, b He-Dong Bian, a Han-Fu Liu, a Fu-

Ping Huang\*a

## **Real environmental samples preparation**

The reproducibility of 1 for sensing  $Cu^{2+}$  and  $Ag^+$  was also measured. After the first quenching experiment, the test material of 1 was recollected by centrifugation and washed several times with deionized water. The regenerated 1 was used again in the detection experiments and the fluorescence emission intensities were measured.

| Symmetry codes: (A) $-x+1/3$ , $-y+2/3$ , $-z+5/3$ ; (B) $y-1/3$ , $-x+y+1/3$ , $-z+4/3$ ; (C) $x-y+2/3$ , $x+1/3$ , $-z+4/3$ . |            |             |            |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------|------------|-------------|------------|--|--|--|--|--|
| Zn1—Cl1                                                                                                                         | 2.3144 (8) | Zn1B—Cl1    | 2.5059 (8) |  |  |  |  |  |
| Zn1—N1                                                                                                                          | 2.291 (2)  | Zn1—N2      | 2.015 (2)  |  |  |  |  |  |
| Zn1C—N4                                                                                                                         | 2.023 (2)  | Zn1—Cl1C    | 2.5058 (8) |  |  |  |  |  |
| Zn1—N4B                                                                                                                         | 2.023 (2)  |             |            |  |  |  |  |  |
| Cl1—Zn1—Cl1C                                                                                                                    | 102.23 (4) | N1—Zn1—Cl1  | 98.95 (7)  |  |  |  |  |  |
| N1—Zn1—Cl1C                                                                                                                     | 156.51 (6) | N2—Zn1—Cl1  | 112.93 (7) |  |  |  |  |  |
| N2—Zn1—Cl1C                                                                                                                     | 87.83 (6)  | N2—Zn1—N1   | 74.54 (8)  |  |  |  |  |  |
| N2—Zn1—N4B                                                                                                                      | 148.99 (9) | N4B—Zn1—Cl1 | 96.84 (6)  |  |  |  |  |  |
| N4B—Zn1—Cl1C                                                                                                                    | 94.38 (7)  | N4B—Zn1—N1  | 93.08 (9)  |  |  |  |  |  |

Table S1 Selected Bond Lengths (Å) and Angles (°) for 1

<sup>\*a</sup> State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, Guilin, 541004, P. R. China. Email: huangfp2010@163.com

\*<sup>b</sup> School of Chemistry and Pharmacy, Guangxi Normal University, Guilin, 541004, P. R. China. Email: <u>lihaiye2010@163.com</u>



**Fig. S2** (a) Complex **1** was placed in DMF: H<sub>2</sub>O( V/V=1:1) solutions for 1day of PXRD patterns. (b) Fluorescence measurements of **1** immersed into the DMF: H<sub>2</sub>O( V/V=1:1) solutions as the suspensions for 0 min and after 30 min.



Fig. S4 PXRD patterns of 1 at different temperatures and the simulated one calculated from the single crystal structure analysis.





Fig. S5 The PXRD patterns of 1 treated in different solvents.(a) Fluorescence measurements of 1 in various pure solvents. (b)

Fig. S6. PXRD patterns of 1 in different pH values in the range of 6-13.



Fig. S7 The solid luminescent emissions of ligand 2,2'-H<sub>2</sub>dbpt and 1.



Fig. S8 (a) Powder X-ray diffraction patterns of the activated framework, and diffraction patterns obtained after the introduction of various metal ions: 1-Cu<sup>2+</sup>, 1-Ag<sup>+</sup>, 1-MnO<sub>4</sub><sup>-</sup>, 1-Cr<sub>2</sub>O<sub>7</sub><sup>2-</sup> and 1-CrO<sub>4</sub><sup>2-</sup>.
(b) PXRD curves of 1after four sensing recovery cycles for Ag<sup>+</sup> and Cu<sup>2+</sup> ions showing that structural integrity of the framework is maintained.



**S9** (a) Emission spectra of 1 dispersed in DMF:  $H_2O(V/V=1:1)$  solution with different

Fig.

concentrations of  $Ag^+$ . (b) Emission spectra of 1 dispersed in DMF:  $H_2O(V/V=1:1)$  solution with different concentrations of  $Ag^+$ . (c) The Stern–Volmer plot of  $I_0/I$  versus  $Ag^+$  concentration.



Fig. S10 Linear region of fluorescence intensity of 1 in DMF:  $H_2O(V/V=1:1)$  solution upon addition of  $Cu^{2+}$  (a) and  $Ag^+$  (b).



Fig. S11 (a) Emission spectra of 1 dispersed in DMF: H<sub>2</sub>O( V/V=1:1) solution with different concentrations of Cr<sub>2</sub>O<sub>7</sub><sup>2-</sup>. (b) The Stern–Volmer plot of I<sub>0</sub>/I versus Cr<sub>2</sub>O<sub>7</sub><sup>2-</sup> concentration. (c) Emission spectra of 1 dispersed in DMF: H<sub>2</sub>O( V/V=1:1) solution with different concentrations of CrO<sub>4</sub><sup>2-</sup>. (d) The Stern–Volmer plot of I<sub>0</sub>/I versus CrO<sub>4</sub><sup>2-</sup> concentration.



Fig. S12 (a) Luminescence intensity of the 1 dispersed in a mixture of other anions with  $Cr_2O_7^{2-}$  (a) and  $CrO_4^{2-}$  (b).



Fig. S13 Linear region of fluorescence intensity of 1 in DMF:  $H_2O(V/V=1:1)$  solution upon addition of  $MnO_4^-$  (a),  $Cr_2O_7^{2-}$  (b) and  $CrO_4^{2-}$  (c).



**Fig. S14** Emission spectra of 1, 1-Cu<sup>2+</sup>, 1-Ag<sup>+</sup>, 1-MnO<sub>4</sub><sup>-</sup>, 1-Cr<sub>2</sub>O<sub>7</sub><sup>2-</sup> and 1-CrO<sub>4</sub><sup>2-</sup> in solid state at room temperature.



**Fig. S15** The photographs of 1- $M^{n+}$  (M= Cu<sup>2+</sup>, Ag<sup>+</sup>, MnO<sub>4</sub><sup>-</sup> and Cr(VI)(Cr<sub>2</sub>O<sub>7</sub><sup>2-</sup> and CrO<sub>4</sub><sup>2-</sup>), respectively) as solid.



Fig. S16 EDS spectrum of  $1-Cu^{2+}$  and  $1-Ag^{+}$ .

| Complex                    | Zn <sup>2+</sup> Content (%) | Cu <sup>2+</sup> Content (%) | Ag <sup>+</sup> Content (%) |
|----------------------------|------------------------------|------------------------------|-----------------------------|
| <b>1-</b> Cu <sup>2+</sup> | 35.68                        | 6.31                         |                             |
| 1-Ag <sup>+</sup>          | 27.47                        |                              | 37.84                       |

| Table S2 | <b>ICP-MS</b> | analysis | results | for Cu <sup>2+</sup> | and Ag <sup>+</sup> | included | 1. |
|----------|---------------|----------|---------|----------------------|---------------------|----------|----|
|          |               | 5.22     |         |                      |                     |          |    |

**Table S3.**  $K_{sv}$  and LOD of MOF-based luminescent sensors for Cu<sup>2+</sup>, Ag<sup>+</sup>, MnO<sub>4</sub><sup>-</sup>, Cr<sub>2</sub>O<sub>7</sub><sup>2-</sup> and CrO<sub>4</sub><sup>2-</sup>.

| MOF-based fluorescent materials                                 | Analyte   | Detection<br>limits | Quenching<br>constant<br>(M <sup>-1</sup> ) | Recycla<br>bility | Solvent | Ref |
|-----------------------------------------------------------------|-----------|---------------------|---------------------------------------------|-------------------|---------|-----|
| Cd <sub>2</sub> (L <sub>3</sub> )(DMF) <sub>2</sub> (Cd-MOF-74) | $Cu^{2+}$ | 78.7 <i>u</i> M     | 1806                                        | NO                | Water   | 1   |
| $[Cd(L)_{2}] \cdot (DMF)_{0.92}$                                | $Cu^{2+}$ | 3.9ppm              | $4.4 \times 10^{3}$                         | YES               | DMF     | 2   |
| $\{[Eu_2K_2(L_1)_2(H_2O)_6] \cdot 5H_2O\}_n$                    | $Cu^{2+}$ | 10 <sup>-6</sup> M  | $5.2 \times 10^{4}$                         | NO                | Ethanol | 3   |
| $Zr_6O_4(OH)_4(L_2-H_2)_3$                                      | $Cu^{2+}$ | 67nM                | $4.5 \times 10^{5}$                         |                   | Water   | 4   |
| ${Zn_5(L)_2(DMF)_2(\mu_3-$                                      | $Cu^{2+}$ | 1.01ppm             | $1.10 \times 10^{3}$                        | NO                | DMF     | 5   |
| $H_2O)]\cdot 2DMF$                                              |           |                     |                                             |                   |         |     |

|                                                            | $Ag^+$                         | 0.64 ppm                | $2.24 \times 10^{3}$ | NO  | DMF     |     |
|------------------------------------------------------------|--------------------------------|-------------------------|----------------------|-----|---------|-----|
| $EuC_{12}H_{10}Br_6O_{11}$                                 | $Cu^{2+}$                      | 7.52×10 <sup>-5</sup> M | 4612.0               | YES | Ethanol | 6   |
| $[Cd(L)(TPOM)_{0.75}]$ ·xS                                 | $Cu^{2+}$                      |                         | 17890                | YES | Water   | 7   |
| $[Zn(L)(BBI) \cdot (H_2O)_2]$                              | $Cr_2O_7^{2-}$                 |                         | 11680                |     |         |     |
| $[Cd(L)(TPOM)_{0.75}]$ ·xS                                 | $Cr_2O_7^{2-}$                 |                         | 13450                |     |         |     |
| $[Eu_6Zn_6(L_2)_2(L_3)_2O_2(OAc)_{18}]$                    | $Ag^+$                         | 7.59 μM                 | 32520                | NO  | DMF     | 8   |
| $[Eu_6Zn_6(L_2)_2(L_3)_2O_2(OAc)_{18}]$                    | $Ag^+$                         | 2.26 μM                 | 32520                | NO  | DMF     | 9   |
| $\{[Co_2(C_{17}H_8O_8)(C_{14}H_{14}-$                      | $Ag^+$                         | 23nM                    | 3.4×10 <sup>5</sup>  | NO  | Water   | 10  |
| $N_4)_2$ ]·3H <sub>2</sub> O} <sub>n</sub>                 | U                              |                         |                      |     |         |     |
| ${[Tb_2(L)_2(H_2O)_2]_n \cdot (5H_2O) \cdot (6DM)}$        | MnO <sub>4</sub> -             | 4.48×10 <sup>-5</sup>   | 1200                 | YES | Water   | 11  |
| AC) <sub>n</sub>                                           |                                | mM                      |                      |     |         |     |
| $\{[Eu_2(L)_2(H_2O)_2]_n \cdot (5H_2O) \cdot (6DM)\}$      | $Cr_2O_7^{2-}$                 | 8.94×10 <sup>-5</sup>   | 1052                 |     |         |     |
| AC) <sub>n</sub>                                           |                                | М                       |                      |     |         |     |
| $[Cd(L)_2(H_2O)_2]_n$                                      | $MnO_4^-$                      | 1.73×10 <sup>-4</sup>   | $2.2 \times 10^{4}$  | NO  | Water   | 12  |
|                                                            |                                | М                       |                      |     |         |     |
|                                                            | $Cr_2O_7^{2-}$                 | 1.75×10-4               | $1.1 \times 10^{4}$  |     |         |     |
|                                                            |                                | Μ                       |                      |     |         |     |
|                                                            | CrO <sub>4</sub> <sup>2-</sup> | 3.41×10 <sup>-5</sup>   | 5.1×10 <sup>4</sup>  | NO  |         |     |
|                                                            |                                | М                       |                      |     |         |     |
| $\{[Eu(L)(H_2O)_2] \cdot 5H_2O\}_n$                        | MnO <sub>4</sub> -             |                         | $0.51 \times 10^{3}$ | NO  | Water   | 13  |
|                                                            | $Cr_2O_7^{2-}$                 |                         | 1.36×10 <sup>3</sup> |     |         |     |
|                                                            | $CrO_4^{2-}$                   |                         | $1.74 \times 10^{3}$ |     |         |     |
| $[Cd_3(bpe)_2(ceba)_2(fa)_2(H_2O)_2]_n$                    | $Cr_2O_7^{2-}$                 |                         | 9510                 | NO  | Water   | 14  |
| $[Eu_2(tpbpc)_4 \cdot CO_3 \cdot 4H_2O] \cdot DMF$         | $Cr_2O_7^{2-}$                 | 1.07ppm                 | $1.04 \times 10^{4}$ | YES | Water   | 15  |
|                                                            | $CrO_4^{2-}$                   | 0.33ppm                 | $4.85 \times 10^{3}$ | YES |         |     |
| $\{[Zn(btz)]_n\}$                                          | $Cr_2O_7^{2-}$                 | 2×10-6 M                | $4.23 \times 10^{3}$ | YES | Water   | 16  |
| $\{[Zn(btz)]_n\}$                                          | $CrO_4^{2-}$                   | 10 <sup>-5</sup> M      | 3.19×10 <sup>3</sup> |     |         |     |
| $\{[Zn_2(ttz)H_2O]_n\}$                                    | $Cr_2O_7^{2-}$                 | 2×10 <sup>-5</sup> M    | $2.19 \times 10^{3}$ |     |         |     |
| $\{[Zn_2(ttz)H_2O]_n\}$                                    | CrO <sub>4</sub> <sup>2-</sup> | 2×10-5 M                | $2.35 \times 10^{3}$ |     |         |     |
| $\{[Zn_3(L)(OH)(H_2O)_5] \cdot NMP \cdot 2H_2 $<br>$O\}_n$ | MnO <sub>4</sub> -             | 3.38×10⁻⁴<br>M          | 1.1×10 <sup>4</sup>  | YES | Water   | 17  |
| $\{[Zn_3(L)(OH)(H_2O)_5]\cdot NMP\cdot 2H_2\}$             | $Cr_2O_7^{2-}$                 | 6.05×10 <sup>-5</sup>   | 6.6×10 <sup>4</sup>  |     |         |     |
| 0}n                                                        | 2,                             | М                       |                      |     |         |     |
| $\{[Zn_3(L)(OH)(H_2O)_5]\cdot NMP\cdot 2H_2\}$             | CrO <sub>4</sub> <sup>2-</sup> | 4.29×10-4               | 1.3×10 <sup>4</sup>  |     |         |     |
| $O_n$                                                      |                                | М                       |                      |     |         |     |
| ${[Zn_6Cl_6(2,2'-dbpt)_3]\cdot 2H_2O}_n$                   | $Cu^{2+}$                      | 0.73µM                  | 5.96×10 <sup>4</sup> | NO  | Water   | Thi |
|                                                            |                                |                         |                      |     |         | S   |
|                                                            |                                |                         |                      |     |         | wo  |
|                                                            |                                |                         |                      |     |         | rk  |
|                                                            | $Ag^+$                         | 6.40µM                  | $1.67 \times 10^{4}$ |     |         |     |
|                                                            | MnO <sub>4</sub> -             | 6.14µM                  | 2×10 <sup>5</sup>    |     |         |     |
|                                                            | $Cr_2O_7^{2-}$                 | 13.64µM                 | $1.85 \times 10^{5}$ |     |         |     |
|                                                            | CrO <sub>4</sub> <sup>2-</sup> | 12.33µM                 | 5.89×10 <sup>4</sup> |     |         |     |

## References

- 1A. J. Howarth, T. C. Wang, S. S. Al-Juaid, S. G. Aziz, J. T. Hupp and O. K. Farha, *Dalton Trans.*, 2016, **45**, 93–97.
- 2S. Senthilkumar, R. Goswami, V. J. Smith, H. C. Bajaj and S. Neogi, ACS Sustainable Chem. Eng., 2018, 6, 10295–10306.
- 3H. Zhang, R. Fan, W. Chen, J. Fan, Y. Dong, Y. Song, X. Du, P. Wang and Y. Yang, *Crystal Growth & Design*, 2016, **16**, 5429–5440.
- 4M. R. Cerón, M. Izquierdo, N. Alegret, J. A. Valdez, A. Rodríguez-Fortea, M. M. Olmstead, A. L. Balch, J. M. Poblet and L. Echegoyen, *Chem. Commun.*, 2016, 52, 64–67.
- 5J.-C. Jin, X.-R. Wu, Z.-D. Luo, F.-Y. Deng, J.-Q. Liu, A. Singh and A. Kumar, *CrystEngComm*, 2017, **19**, 4368–4377.
- 6J. A. Smith, M. A. Singh-Wilmot, K. P. Carter, C. L. Cahill and J. A. Ridenour, *Crystal Growth & Design*, 2019, **19**, 305–319.
- 7Y. Zhao, X. Xu, L. Qiu, X. Kang, L. Wen and B. Zhang, ACS Appl. Mater. Interfaces, 2017, 9, 15164–15175.
- 8D. Jiang, X. Yang, H. Chen, F. Wang, S. Wang, T. Zhu, L. Zhang and S. Huang, *Dalton Trans.*, 2019, 48, 2206–2212.
- 9D. Jiang, X. Yang, H. Chen, F. Wang, S. Wang, T. Zhu, L. Zhang and S. Huang, *Dalton Trans.*, 2019, 48, 2206–2212.
- 10 Y. Liu, F. Zhang, P. Wu, C. Deng, Q. Yang, J. Xue, Y. Shi and J. Wang, *Inorg. Chem.*, 2019, 58, 924–931.

- 11 L. (Leo) Liu, D. Zhu, L. L. Cao and D. W. Stephan, *Dalton Trans.*, 2017, 46, 3095–3099.
- 12 Y.-T. Yan, F. Cao, W.-Y. Zhang, S.-S. Zhang, F. Zhang and Y.-Y. Wang, New J. Chem., 2018, 42, 9865–9875.
- 13 P.-F. Zhang, G.-P. Yang, G.-P. Li, F. Yang, W.-N. Liu, J.-Y. Li and Y.-Y. Wang, *Inorg. Chem.*, 2019, 58, 13969–13978.
- 14 R.-R. Zhu, T. Wang, T. Yan, L. Jia, Z. Xue, J. Zhou, L. Du and Q.-H. Zhao, *Dalton Trans.*, 2019, **48**, 12159–12167.
- 15 J. Liu, G. Ji, J. Xiao and Z. Liu, Inorg. Chem., 2017, 56, 4197-4205.
- 16 C.-S. Cao, H.-C. Hu, H. Xu, W.-Z. Qiao, B. Zhao, *CrystEngComm*, 2016, 18, 4445–4451.
- 17 Y. Zhao, X. Xu, L. Qiu, X. Kang, L. Wen and B. Zhang, ACS Appl. Mater. Interfaces, 2017, 9, 15164–15175.