Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Electronic Supporting Information (ESI)

Mono-substituted amine-oligosilsesquioxanes as functional tools in the Pd(II) coordination chemistry: synthesis and properties

Kamila Piec, Sylwia Kostera, Dawid Jędrzkiewicz, Jolanta Ejfler and Łukasz John* Faculty of Chemistry, University of Wrocław, 14 F. Joliot-Curie, 50-383 Wrocław, Poland *Corresponding Author: Łukasz John, e-mail: lukasz.john@chem.uni.wroc.pl

Table of Contents

Table S1. X-ray experimental data and refinement for palladium complexes 9 and 10	3
Table S2. Selected bond distances (Å) and angles (°) for 9 and 10.	4
Table S3. Energies and relative energies of isomers corresponding to 9 optimized in vacuo.	4
Table S4. Energies and relative energies of isomers corresponding to 9 optimized in chloroform	5
Table S5. Energies and relative energies of isomers corresponding to 10 optimized in vacuo.	5
Table S6. Energies and relative energies of isomers corresponding to 10 optimized in chloroform	5
Figure S1. ¹ H NMR (500 MHz, CDCl ₃ , 300 K) spectrum of 1	6
Figure S2. ¹³ C NMR (126 MHz, CDCl ₃ , 300 K) spectrum of 1	6
Figure S3. ²⁹ Si NMR (59.6 MHz, CDCl ₃ , 300 K) spectrum of 1	7
Figure S4. ¹ H NMR (500 MHz, CDCl ₃ , 300 K) spectrum of 2	8
Figure S5. ¹³ C NMR (126 MHz, CDCl ₃ , 300 K) spectrum of 2	8
Figure S6. ²⁹ Si NMR (59.6 MHz, CDCl ₃ , 300 K) spectrum of 2	9
Figure S7. ¹ H NMR (500 MHz, CDCl ₃ , 300 K) spectrum of 3	10
Figure S8. ¹³ C NMR (126 MHz, CDCl ₃ , 300 K) spectrum of 3	10
Figure S9. ²⁹ Si NMR (59.6 MHz, CDCl ₃ , 300 K) spectrum of 3	11
Figure S10. ¹ H NMR (500 MHz, CDCl ₃ , 300 K) spectrum of 4	12
Figure S11. ¹³ C NMR (126 MHz, CDCl ₃ , 300 K) spectrum of 4	12
Figure S12. ²⁹ Si NMR (59.6 MHz, CDCl ₃ , 300 K) spectrum of 4	13
Figure S13. ¹ H NMR (500 MHz, CDCl ₃ , 300 K) spectrum of 5	14
Figure S14. ¹³ C NMR (126 MHz, CDCl ₃ , 300 K) spectrum of 5	14
Figure S15. ²⁹ Si NMR (59.6 MHz, CDCl ₃ , 300 K) spectrum of 5	15
Figure S16. ¹ H NMR (500 MHz, CDCl ₃ , 300 K) spectrum of 6	16
Figure S17. ¹³ C NMR (126 MHz, CDCl ₃ , 300 K) spectrum of 6	16
Figure S18. ²⁹ Si NMR (59.6 MHz, CDCl ₃ , 300 K) spectrum of 6	17
Figure S19. ¹ H NMR (500 MHz, CDCl ₃ , 300 K) spectrum of 7	18
Figure S20. ¹³ C NMR (126 MHz, CDCl ₃ , 300 K) spectrum of 7	18
Figure S21. ²⁹ Si NMR (59.6 MHz, CDCl ₃ , 300 K) spectrum of 7	19
Figure S22. ¹ H NMR (500 MHz, CDCl ₃ , 300 K) spectrum of 8	20
Figure S23. ¹³ C NMR (126 MHz, CDCl ₃ , 300 K) spectrum of 8	20
Figure S24. ²⁹ Si NMR (59.6 MHz, CDCl ₃ , 300 K) spectrum of 8	21
Figure S25. ¹ H NMR (500 MHz, CDCl ₃ , 300 K) spectrum of 9	22
Figure S26. ¹ H- ¹³ C HMOC NMR (500 MHz, CDCl ₃ , 20 °C) spectrum of 9	22
Figure S27. ¹ H- ¹³ C HMOC NMR (500 MHz, CDCl ₃ , 20 °C) spectrum of 9	23
Figure S28. ²⁹ Si NMR (59.6 MHz, CDCl ₃ , 300 K) spectrum of 9	23
Figure S29. ¹ H NMR (500 MHz, CDCl ₃ , 300 K) spectrum of 10	24
Figure S30. ²⁹ Si NMR (59.6 MHz, CDCl ₃ , 300 K) spectrum of 10	24
Figure S31. HR-MS (ESI+, TOF, CHCl ₃) spectrum of 1	25
Figure S32. HR-MS (ESI+, TOF, CHCl ₃) spectrum of 2	25
Figure S33. HR-MS (ESI+, TOF, CHCl ₃) spectrum of 3 .	26
Figure S34. HR-MS (ESI+, TOF, CHCl ₂) spectrum of 4 .	26
Figure S35. HR-MS (ESI+, TOF, CHCl ₃) spectrum of 5	27
Figure S36. HR-MS (ESI+, TOF, CHCl ₃) spectrum of 6.	27
Figure S37. HR-MS (ESI+, TOF, CHCl ₃) spectrum of 7	28
Figure S38. HR-MS (ESI+, TOF, CHCl ₃) spectrum of 8.	28
Figure S39. The asymmetric unit of 10 crystal structure.	29
Figure S40. Structure disordering present in 10	29
- Bure S tot Substanting Present in Formation and Substanting Present in Formation	

	9	10
Empirical formula	$C_{78}H_{156}N_2O_{28}PdSi_{16}$	$C_{80}H_{156}N_2O_{32}PdSi_{16}$
Formula weight	2125.88	2213.90
Crystal system	Triclinic	Triclinic
Space group	P-1	P-1
a (Å)	9.895(7)	9.910(3)
b (Å)	10.696(8)	10.779(4)
c (Å)	26.93(2)	26.361(9)
α (°)	88.13(6)	89.83(4)
β (°)	85.08(6)	81.99(3)
γ (°)	76.48(5)	88.94(4)
V (Å ³)	2761(4)	2787.9(17)
Ζ	1	1
Crystal description	Block, yellow	Needle, yellow
Crystal size (mm)	$0.48 \times 0.27 \times 0.17$	$0.37 \times 0.11 \times 0.08$
d_{calc} (g/cm ³)	1.279	1.319
μ (mm ⁻¹)	0.408	0.409
F(000)	1132	1176
Diffractometer	Kuma KM-4 CCD	Xcalibur, CCD Ruby
λ (Å)	0.71073 (Mo)	0.71073 (Mo)
T (K)	100	100
Θ min/max (°)	3.0/25.5	1.6/26.5
h, k, l min/max	-9/11, -12/12, -32/32	-12/11, -13/11, -24/33
Reflections collected	20719	19647
Independent reflections	10182	11534
Reflections [I>2o(I)]	5001	7437
R (int.)	0.1023	0.0335
data/restraints/params	10182/36/610	11534/1221/977
$R[F^2 > 2\sigma(F^2)]$	0.0854	0.0585
$wR(F^2)$	0.2419	0.1517
GooF	0.948	1.018
$\Delta \rho_{\text{max}} / \Delta \rho_{\text{min}} (e \cdot \text{\AA}^{-3})$	1.31/-0.79	0.82/-0.33

Table S1. X-ray experimental data and refinement for palladium complexes 9 and 10.

Atoms	9	Atoms	10	Atoms	10			
Distances (Å)								
Pd1-O13	2.003(6)	Pd1A-O15A	1.980(11)	Pd1B-O15B	1.99(3)			
		Pd1A-O15C	2.060(11)	Pd1B-O15D	2.12(3)			
Pd1-N1	2.082(7)	Pd1A-N1A	2.072(13)	Pd1B-N1B	2.02(3)			
		Pd1A-N1C	2.098(11)	Pd1B-N1D	2.00(4)			
		Angles (°)					
O13-Pd1-O13 ⁱ	180.0	O15A-Pd1A-O15C	178.6(5)	O15B-Pd1B-O15D	174.5(10)			
O13-Pd1-N1	93.5(3)	O15A-Pd1A-N1A	92.8(5)	O15B-Pd1B-N1B	94.9(13)			
O13-Pd1-N1 ⁱ	93.5(3)	O15A-Pd1A-N1C	86.5(5)	O15B-Pd1B-N1D	83.1(14)			
O13 ⁱ -Pd1-N1	86.5(3)	O15C-Pd1A-N1A	88.1(5)	O15D-Pd1B-N1B	88.9(12)			
O13 ⁱ -Pd1-N1 ⁱ	86.5(3)	O15C-Pd1A-N1C	92.7(4)	O15D-Pd1B-N1D	93.0(12)			
N1-Pd1-N1 ⁱ	180.0	N1A-Pd1A-N1C	175.9(5)	N1B-Pd1B-N1D	177.8(15)			

Table S2. Selected bond distances (Å) and angles (°) for 9 and 10.

ⁱ 1-X,1-Y,1-Z for 9

ALERT B EXPLANATION

B Alert explanation for 9:

PLAT910_ALERT_3_B Missing # of FCF Reflection(s) Below Theta(Min). 17 Note

RESPONSE: Theta min = 3.0 deg. The missing reflections have a theta value in the range 0.8 - 2.9 deg. and therefore they either are masked by the beamstop or their intensities have overflown.

Table S3.	Energies an	d relative er	nergies of is	somers corresp	ponding to) optimized	in vacuo.
	0		0				

Isomer	E (hartree)	ZPE (kcal/mol)	ΔE (kcal/mol)	ΔE_{zpe} (kcal/mol)	ΔE _{zpe} (kJ/mol)
9_ RS_A	-1394.872770	323.58	0.00	0.00	0.00
9_ RS_B	-1394.855381	323.03	10.91	10.36	43.36
9_ RR/SS_A	-1394.863788	323.90	5.64	5.96	24.93
9_ RR/SS_B	-1394.840228	324.00	20.42	20.84	87.19

Isomer	E (hartree)	ZPE (kcal/mol)	ΔE (kcal/mol)	ΔE_{zpe} (kcal/mol)	ΔE_{zpe} (kJ/mol)
9_ RS_A	-1394.872770	323.58	0.00	0.00	0.00
9 _RS_B	-1394.855369	323.71	10.92	11.05	46.24
9_ RR/SS_A	-1394.872362	323.50	0.26	0.17	0.72
9_ RR/SS_B	-1394.852759	323.52	12.56	12.50	52.29

 Table S4. Energies and relative energies of isomers corresponding to 9 optimized in chloroform.

Table S5. Energies and relative energies of isomers corresponding to 10 optimized in vacuo.

Isomer	E (hartree)	ZPE (kcal/mol)	ΔE (kcal/mol)	ΔE_{zpe} (kcal/mol)	ΔE _{zpe} (kJ/mol)
10_RS_A	-1771.913828	343.45	0.00	0.00	0.00
10_RS_B	-1771.891082	343.36	14.27	14.18	59.34
10_RR/SS_A	-1771.913639	343.47	0.12	0.14	0.59
10_RR/SS_B	-1771.890010	343.60	14.95	15.10	63.17

Table S6. Energies and relative energies of isomers corresponding to 10 optimized in

chloroform.

Isomer	E (hartree)	ZPE (kcal/mol)	ΔE (kcal/mol)	ΔE_{zpe} (kcal/mol)	ΔE _{zpe} (kJ/mol)
10_RS_A	-1771.924923	343.45	0.00	0.00	0.00
10_RS_B	-1771.905876	343.36	11.95	11.86	49.63
10_RR/SS_A	-1771.924737	343.47	0.12	0.14	0.58
10_RR/SS_B	-1771.904993	343.60	12.51	12.66	52.96

Figure S2. ¹³C NMR (126 MHz, CDCl₃, 300 K) spectrum of 1.

Figure S5. ¹³C NMR (126 MHz, CDCl₃, 300 K) spectrum of 2.

Figure S7. ¹H NMR (500 MHz, CDCl₃, 300 K) spectrum of 3.

Figure S10. ¹H NMR (500 MHz, CDCl₃, 300 K) spectrum of 4.

Figure S11. ¹³C NMR (126 MHz, CDCl₃, 300 K) spectrum of **4**.

Figure S13. ¹H NMR (500 MHz, CDCl₃, 300 K) spectrum of 5.

14

Figure S15. ²⁹Si NMR (59.6 MHz, CDCl₃, 300 K) spectrum of 5.

Figure S16. ¹H NMR (500 MHz, CDCl₃, 300 K) spectrum of 6.

Figure S18. ²⁹Si NMR (59.6 MHz, CDCl₃, 300 K) spectrum of 6.

Figure S22. ¹H NMR (500 MHz, CDCl₃, 300 K) spectrum of 8.

Figure S23. ¹³C NMR (126 MHz, CDCl₃, 300 K) spectrum of 8.

Figure S25. ¹H NMR (500 MHz, CDCl₃, 300 K) spectrum of 9.

Figure S26. ¹H-¹³C HMQC NMR (500 MHz, CDCl₃, 20 °C) spectrum of 9.

Figure S27. ¹H-¹³C HMQC NMR (500 MHz, CDCl₃, 20 °C) spectrum of 9.

Figure S28. ²⁹Si NMR (59.6 MHz, CDCl₃, 300 K) spectrum of 9.

Figure S29. ¹H NMR (500 MHz, CDCl₃, 300 K) spectrum of 10.

Figure S30. ²⁹Si NMR (59.6 MHz, CDCl₃, 300 K) spectrum of 10.

Figure S32. HR-MS (ESI+, TOF, CHCl₃) spectrum of 2.

Figure S33. HR-MS (ESI+, TOF, CHCl₃) spectrum of 3.

Figure S34. HR-MS (ESI+, TOF, CHCl₃) spectrum of 4.

Figure S36. HR-MS (ESI+, TOF, CHCl₃) spectrum of 6.

Figure S38. HR-MS (ESI+, TOF, CHCl₃) spectrum of 8.

Figure S39. The asymmetric unit of 10 crystal structure.

Figure S40. Structure disordering present in 10.