Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Supporting Information

Vanadium-doped Molybdenum Carbides as Promising

Catalyst for C-N/C-C coupling reactions

Chen Zhang¹, Siduo Wu¹, Shaochuan Luo¹, Yong Wang^{*1}, Jingjing Li,² Yan Leng,² ¹ Guangdong Provincial Key Laboratory of Nano-Micro Material Research center, School of Chemical Biology & Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China

² School of Chemical and Material Engineering, Jiangnan University, Jiangsu, 214122, China.

* Corresponding author. E-mail: ywang@pkusz.edu.cn

I. Materials and methods

All the reactions reacted in the air. All the obtained products were characterized ¹H NMR spectra and ¹³C NMR spectra. NMR spectra were obtained on Varian 400 MHz spectrometers; TLC was performed using commercially prepared 200-300 mesh silica gel plates; All the reagents were purchased from commercial sources (Energy Chemical, TCI, J&K Chemic, Meryer Chemic), and used without further purification. FT-IR spectra were recorded on a Nicolet 360 FT-IR instrument (KBr discs) in the 4000–400 cm⁻¹ region. TG analysis was carried out using a STA409 instrument in dry air at a heating rate of 25 °C/min from 25 to 900 °C. SEM was performed on a HITACHI S-4800 field-emission scanning electron microscope. TEM was obtained using a JEOL JEM-2100 microscope operated at 200 kV. XRD patterns were collected on a Bruker D8 Advance powder diffractometer, using a Ni-filtered Cu/Kα radiation source at 40 kV and 20 mA, from 3° to 80° with a scan rate of 4°/min. The specific surface areas were evaluated using the Brunauer–Emmett–Teller (BET) method and the pore distribution was calculated by the BJH method from adsorption branches of isotherms.

II. Catalysts and Compounds Characterization

Figure S1. ¹H NMR spectrum of [CMim]Br.

Figure S2. SEM images of (a) PMoV-CMim, (b) V-Mo₂C@NC₄₅₀, (c) V-Mo₂C@NC₆₀₀, and (d) V-Mo₂C@NC₈₀₀.

Figure S3. (A) N_2 sorption analysis and (B) the corresponding pore size distribution of $Mo_2C@NC_{800}$.

Entry	Sample	BET	Pore size (nm)	Pore volume (m ³)
		(m^{2}/g)		
1	PMoV-CMim	2.9		0.004
2	V-Mo ₂ C@NC ₄₅₀	2.5		0.004
3	V-Mo ₂ C@NC	27.1	3.2	0.022
	600			
4	V-Mo ₂ C@NC	43.3	6.8	0.074
	800			

 Table S1. Porous features of different samples.

Figure S4. XPS survey spectrum of V-Mo₂C@NC₈₀₀.

Figure S5. Effect of (A) Amount of catalyst, (B) Temperature, (C) Amount of oxidant and (D) Time on the conversion and selectivity of the oxidative coupling of benzylamine over V-Mo₂C@NC₈₀₀.

Figure S6. Catalytic reusability of V-Mo₂C@NC₈₀₀ for coupling of benzylamine.

الله الم	о + ОН 2а	Catalyst, Base Solvent, Reflux	3a
Entry	Base	Solvent	Yield [%] ^b
1	NaOH	Toluene	85
2	Na ₂ CO ₃	Toluene	65
3	Cs_2CO_3	Toluene	69
4	KO <i>t</i> Bu	Toluene	72
5	NaOH	DCM	< 5
6	NaOH	THF	34
7	NaOH	H ₂ O	< 5
8	NaOH	Xylene	76

 Table S2. Screening of reaction conditions ^a

^{*a*}Reagents and conditions: **1a** (1.0 mmol), **2a** (1.2 mmol), V-Mo₂C@NC₈₀₀ (0.01 g), base (1.0 mmol), solvent (3 mL), 110 °C or reflux, 15 h, under air. ^{*b*} Isolated yields based on **1a**.

Scheme 1. Recycled experiments.

III. ¹H NMR and ¹³C NMR Spectra

¹H NMR for 3a

¹H NMR for $\mathbf{3b}$

¹H NMR for **3c**

¹H NMR for **3d**

¹H NMR for **3e**

¹H NMR for 3f

¹H NMR for 3g

¹H NMR for **3h**

¹H NMR for **3i**