Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

SUPPORTING INFORMATION

Structure-Property Relationships Studies of 3-acyl Substituted Furans: the serendipity identification and characterization of a new non-classic hydrogen bond donor moiety

Daniel A. Rodrigues,^{a, b, †} Pedro de Sena M. Pinheiro,^{a, c, †} Fernanda S. Sagrillo,^a Maria Clara Ramalho,^d Marina A. Alves,^e Sreekanth Thota,^a Luzineide W. Tinoco,^{c, f} Alvicler Magalhães,^g Carlos M. R. Sant'Anna,^{a, h} Carlos A. M. Fraga^{*, a, b, c}

[†] These authors contributed equally.

*To whom correspondence should be addressed. E-mail: cmfraga@ccsdecania.ufrj.br

^aLaboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, PO Box 68023, 21941-902, Rio de Janeiro, RJ, Brazil

^bPrograma de Pós-Graduação em Química, Instituto de Química, Universidade Federal do Rio de Janeiro, 21941-909, Rio de Janeiro, RJ, Brazil

^cPrograma de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, 21941-902, Rio de Janeiro, RJ, Brazil

^dDepartamento de Química, Pavilhão de Química, Universidade Federal Rural do Rio de Janeiro, 23890-000 Seropédica-RJ, Brazil

^eLaboratório de Apoio ao Desenvolvimento Tecnológico (LADETEC), Instituto de Química, Avenida Horácio Macedo, 1281, Polo de Química, Bloco C, Cidade Universitária, 21941-598, Rio de Janeiro, RJ, Brazil

^fInstituto de Pesquisa de Produtos Naturais, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, Centro de Ciências da Saúde, Bl. H, 21941-902 Rio de Janeiro-RJ, Brazil

^gInstituto de Química, Universidade Federal do Rio de Janeiro, 21941-909, Rio de Janeiro, RJ, Brazil ^hDepartamento de Química Fundamental, Instituto de Química, Universidade Federal Rural do Rio de Janeiro, 23970-000, Seropédica, RJ, Brazil

SPECTRAL DATA

Spectrum 1 – ¹H NMR (500 MHz, DMSO- d_6) of compound **2** at 25°C.

Spectrum 3 – 13 C NMR (125 MHz, DMSO- d_6) of compound **2** at 25°C.

Spectrum 4 – HSQC spectrum (500 MHz, DMSO- d_6) of compound **2** at 25°C.

Spectrum 5 – HMBC spectrum (500 MHz, DMSO- d_6) of compound **2** at 25°C.

Spectrum 6 – Infrared spectrum (ATR) of compound **2**.

03/15/19 20:25:01

Spectrum 7 – High resolution mass spectrometry $([M + H]^+)$ of compound **2**.

Spectrum 10 – ¹³C NMR (125 MHz, DMSO- d_6) of compound **3** at 25°C.

Spectrum 11 – HSQC spectrum (500 MHz, DMSO-*d*₆) of compound **3** at 25°C.

Spectrum 12 – HMBC spectrum (500 MHz, DMSO- d_6) of compound **3** at 25°C.

Spectrum 13 – Infrared spectrum (ATR) of compound 3.

03/15/19 20:12:36

Spectrum 14 – High resolution mass spectrometry $([M + H]^+)$ of compound 3.

Spectrum 15 – ¹H NMR (500 MHz, DMSO- d_6) of compound 4 at 25°C.

Spectrum 16 – Dynamic ¹H NMR (500 MHz, DMSO-*d*₆) of compound 4.

Spectrum 17 – 13 C NMR (125 MHz, DMSO- d_6) of compound 4 at 25°C.

Spectrum 18 – HSQC spectrum (500 MHz, DMSO- d_6) of compound 4 at 25°C.

Spectrum 19 – HMBC spectrum (500 MHz, DMSO-*d*₆) of compound **4** at 25°C.

Spectrum 20 – Infrared spectrum (ATR) of compound **4**.

03/15/19 20:00:12

Spectrum 21 – High resolution mass spectrometry $([M + H]^+)$ of compound 4.

Spectrum 24 - ¹³C NMR (125 MHz, DMSO-*d*₆) of compound **5** at 25°C.

Spectrum 25 – HSQC spectrum (500 MHz, DMSO-*d*₆) of compound **5** at 25°C.

Spectrum 26 – HMBC spectrum (500 MHz, DMSO- d_6) of compound **5** at 25°C.

Spectrum 27 – Infrared spectrum (ATR) of compound 5.

03/15/19 19:47:45

Spectrum 28 – High resolution mass spectrometry $([M + H]^+)$ of compound 5.

Spectrum 29 – ¹H NMR (500 MHz, DMSO- d_6) of compound 6 at 25°C.

Spectrum 31 – 13 C NMR (125 MHz, DMSO- d_6) of compound 6 at 25°C.

Spectrum 32 – HSQC spectrum (500 MHz, DMSO- d_6) of compound 6 at 25°C.

Spectrum 33 – HMBC spectrum (500 MHz, DMSO-*d*₆) of compound **6** at 25°C.

Spectrum 34 – Infrared spectrum (ATR) of compound **6**.
E:\20190315_Padroes 2\PIFI5

03/15/19 20:37:28

Spectrum 35 – High resolution mass spectrometry $([M + H]^+)$ of compound 6.

S39

Spectrum 38 – 13 C NMR (125 MHz, DMSO- d_{δ}) of compound 7 at 25°C.

Spectrum 39 – HSQC spectrum (500 MHz, DMSO- d_6) of compound 7 at 25°C.

Spectrum 40 – HMBC spectrum (500 MHz, DMSO- d_6) of compound 7 at 25°C.

Spectrum 41 – Infrared spectrum (ATR) of compound **7**.

E:\20190315_Padroes 2\PIFI6

03/15/19 20:49:52

Spectrum 42 – High resolution mass spectrometry $([M + H]^+)$ of compound 7.

Spectrum 44 – Dynamic ¹H NMR (500 MHz, DMSO-*d*₆) of compound 8.

Spectrum 45 – 13 C NMR (125 MHz, DMSO- d_6) of compound 8 at 25°C.

Spectrum 46 – HSQC spectrum (500 MHz, DMSO-*d*₆) of compound **8** at 25°C.

Spectrum 47 – HMBC spectrum (500 MHz, DMSO- d_6) of compound 8 at 25°C.

Spectrum 48 – Infrared spectrum (ATR) of compound 8.

E:\20190315_Padroes 2\PIFI7

03/15/19 21:02:19

Spectrum 49 – High resolution mass spectrometry $([M + H]^+)$ of compound 8.

Spectrum 50 – ¹H NMR (500 MHz, DMSO- d_6) of compound 9 at 25°C.

Spectrum 51 – 13 C NMR (125 MHz, DMSO- d_6) of compound 9 at 25°C.

Spectrum 52 – Infrared spectrum (ATR) of compound 9.

Spectrum 53 – High resolution mass spectrometry $([M + H]^+)$ of compound 9.

Spectrum 54 – ¹H NMR (500 MHz, DMSO- d_6) of compound **10** at 25°C.

Spectrum 55 – 13 C NMR (125 MHz, DMSO- d_6) of compound 10 at 25°C.

Spectrum 56 – Infrared spectrum (ATR) of compound 10.

Spectrum 57 – High resolution mass spectrometry $([M + H]^+)$ of compound 10.

S60

Spectrum 59 – ¹³C NMR (125 MHz, DMSO-*d*₆) of compound **11** at 25°C.

Spectrum 60 – Infrared spectrum (ATR) of compound **11**.

E:\20190315_Padroes 2\PITI2

03/15/19 18:20:53

Spectrum 61 – High resolution mass spectrometry $([M + H]^+)$ of compound 11.

Spectrum 63 – 13 C NMR (125 MHz, DMSO- d_6) of compound **12** at 25°C.

Spectrum 64 – Infrared spectrum (ATR) of compound 12.

E:\20190315_Padroes 2\PITI1

03/15/19 18:08:25

Spectrum 65 – High resolution mass spectrometry $([M + H]^+)$ of compound 12.

Spectrum 66 – ¹H NMR (500 MHz, DMSO- d_6) of compound **13** at 25°C.

Spectrum 67 – ¹³C NMR (125 MHz, DMSO- d_6) of compound 13 at 25°C.

Spectrum 68 – Infrared spectrum (ATR) of compound 13.

Spectrum 69 – High resolution mass spectrometry $([M + H]^+)$ of compound 13.

Spectrum 70 – ¹H NMR (500 MHz, DMSO- d_6) of compound 14 at 25°C.

Spectrum 71 – 13 C NMR (125 MHz, DMSO- d_6) of compound 14 at 25°C.

Spectrum 72 – Infrared spectrum (ATR) of compound 14.

Spectrum 73 – High resolution mass spectrometry $([M + H]^+)$ of compound 14.

Spectrum 75 – 13 C NMR (125 MHz, DMSO- d_6) of compound 15 at 25°C.

Spectrum 76 – Infrared spectrum (ATR) of compound 15.

Spectrum 77 – High resolution mass spectrometry $([M + H]^+)$ of compound 15.

Spectrum 79 – 13 C NMR (125 MHz, DMSO- d_6) of compound 16 at 25°C.

Spectrum 80 – Infrared spectrum (ATR) of compound **16**.

E:\20190315_Padroes 2\PIFI8

03/15/19 21:14:43

Spectrum 81 – High resolution mass spectrometry $([M + H]^+)$ of compound 16.

Spectrum 83 – 13 C NMR (125 MHz, DMSO- d_6) of compound 17 at 25°C.

Spectrum 84 – Infrared spectrum (ATR) of compound 17.

Spectrum 85 – High resolution mass spectrometry $([M + H]^+)$ of compound 17.

CRYSTALLOGRAPHIC DATA

Procedure for obtaining the crystals

The both crystals were obtained by dissolving 5 mg of the pure solid compounds 2 and 9 in 20 mL of methanol which were left to stand at room temperature for slow evaporation.

Identification code	(2)	(9)		
Empirical formula	$C_{12}H_{10}N_2O_2$	$C_{12}H_{12}N_2O_2S$		
Formula weight/g mol ⁻¹	214.22	248.30		
Temperature/K	293.0	293(2)		
Crystal system	monoclinic	N/A		
Space group	$P2_{1}/n$	$P2_{1}/n$		
a/Å	11.3370(10)	4.8356(8)		
b/Å	4.9540(4)	19.976(4)		
c/Å	19.4646(16)	12.518(3)		
α/°	90	90		
β/°	104.141(5)	95.013(5)		
γ/°	90	90		
Volume/Å ³	1060.07(16)	1204.6(4)		
Z	4	4		
$\rho_{calc}g/cm^3$	1.342	1.369		
µ/mm ⁻¹	0.094	0.260		
F(000)	448.0	520.0		
Crystal size/mm ³	$0.434\times0.393\times0.174$	$0.544 \times 0.089 \times 0.068$		
Radiation	MoKa ($\lambda = 0.71073$)	MoKa ($\lambda = 0.71073$)		
20 range for data	4.316 to 50.71	5.226 to 50.014		
collection/°				
Index ranges	$\textbf{-13} \leq h \leq 13, \textbf{-5} \leq k \leq 5,$	$-5 \le h \le 5, -23 \le k \le 23, -14$		
	$-23 \le l \le 23$	$\leq l \leq 14$		
Reflections collected	23399	16061		
Independent reflections	1928 $[R_{int} = 0.1634]$	2119 [$R_{int} = 0.2339$, $R_{sigma} =$		
	$R_{sigma} = 0.0542$]	0.1089]		
Data/restraints/parameters	1928/0/146	2119/75/177		
Goodness-of-fit on F ²	1.060	1.068		
Final R indexes $[I \ge 2\sigma (I)]$	$R_1 = 0.0524,$	$R_1 = 0.0649,$		
	$wR_2 = 0.1139$	$wR_2 = 0.0955$		

 Table S1. Crystal data and structure refinement for compounds 2 and 9.

Final R indexes [all data]	$R_1 = 0.1009,$	$R_1 = 0.1680,$	
	$wR_2 = 0.1337$	$wR_2 = 0.1225$	
Largest diff. peak/hole/e Å ⁻³	0.16/-0.16	0.24/-0.20	

(2)			(9)			
Atom	Atom	Length/Å	Atom	Atom	Length/Å	
02	C8	1.241(3)	C12	C11A	1.326(11)	
N1	N2	1.370(2)	C12	C9	1.397(5)	
N1	C8	1.345(3)	C12	S1B	1.668(5)	
N2	C7	1.277(3)	C9	C10	1.372(5)	
01	C11	1.354(3)	C9	C8	1.482(5)	
01	C12	1.354(3)	C10	C11B	1.326(11)	
C1	C7	1.460(3)	C10	S1A	1.669(5)	
C1	C6	1.383(3)	C11A	S1A	1.722(11)	
C1	C2	1.380(3)	S1B	C11B	1.722(11)	
C9	C8	1.470(3)	01	C8	1.234(4)	
C9	C10	1.426(3)	N2	C8	1.339(4)	
C9	C12	1.337(3)	N2	N1	1.382(3)	
C6	C5	1.380(3)	N1	C7	1.276(4)	
C10	C11	1.322(4)	C1	C2	1.379(5)	
C5	C4	1.365(4)	C1	C6	1.387(5)	
C2	C3	1.375(4)	C1	C7	1.456(5)	
C4	C3	1.384(4)	C2	C3	1.388(5)	
			C6	C5	1.382(5)	
			C3	C4	1.362(5)	
			C5	C4	1.363(5)	

 Table S2. Bond Lengths for compounds 2 and 9.

(2)				(9)		
Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
C8	N1	N2	122.4(2)	C11A	C12	C9	111.5(7)
C7	N2	N1	115.5(2)	C9	C12	S1B	115.8(5)
C12	01	C11	106.1(2)	C10	C9	C12	111.2(4)
C6	C1	C7	119.5(2)	C10	C9	C8	120.8(4)
C2	C1	C7	121.9(2)	C12	C9	C8	128.0(3)
C2	C1	C6	118.6(2)	C11B	C10	C9	108.7(11)
C10	С9	C8	123.0(2)	C9	C10	S1A	114.0(3)
C12	C9	C8	131.9(2)	C12	C11A	S1A	114.0(9)
C12	С9	C10	105.0(2)	C10	S1A	C11A	89.2(5)
N2	C7	C1	121.8(2)	C12	S1B	C11B	85.6(9)
02	C8	N1	119.1(2)	C10	C11B	S1B	118.7(15)
02	C8	C9	119.8(2)	C8	N2	N1	118.6(3)
N1	C8	C9	121.1(2)	C7	N1	N2	115.2(3)
C5	C6	C1	120.6(2)	O1	C8	N2	122.7(3)
C11	C10	C9	107.2(2)	O1	C8	C9	120.7(3)
C4	C5	C6	120.6(3)	N2	C8	C9	116.6(3)
C3	C2	C1	120.6(3)	C2	C1	C6	118.6(3)
C10	C11	01	110.5(2)	C2	C1	C7	119.3(3)
С9	C12	01	111.2(2)	C6	C1	C7	122.0(3)
C5	C4	C3	119.2(3)	N1	C7	C1	121.5(3)
C2	C3	C4	120.5(3)	C1	C2	C3	121.1(4)
				C5	C6	C1	119.9(4)
				C4	C3	C2	119.1(4)
				C4	C5	C6	120.3(4)
				C3	C4	C5	120.9(4)

 Table S3. Bond Angles for compounds 2 and 9.

MOLECULAR MODELING

Table S4. Potential energy surface scans for the derivatives (9 - 15), using the CAM-B3LYP/631(d) methodology with the C-PCM solvation model for polar organic solvent option available in the Spartan'18 software.

	S H	N	R	[O H N S	R	
			R, ene	rgy in kca	l/mol		
Amide bond Dihedral Angle (O=C-N-H)	-N(CH ₃) ₂ (12)	-OCH ₃ (11)	-CH ₃ (10)	-H (9)	-Cl (13)	-CF ₃ (14)	-NO ₂ (15)
180°	0.00	0.00	0.00	0.00	0.00	0.00	0.00
165°	0.03	0.03	0.01	0.05	0.03	0.01	0.04
150°	0.87	0.84	0.82	0.87	0.85	0.83	0.86
135°	2.60	2.55	2.55	2.57	2.57	2.52	2.56
120°	5.17	5.10	5.07	5.08	5.05	5.02	5.03
105°	8.29	8.19	8.13	8.13	8.06	8.04	8.02
90°	11.52	11.40	11.32	11.29	11.24	11.15	11.12
75°	14.28	14.08	14.00	13.95	13.87	13.78	13.67
60°	15.67	15.41	15.24	15.19	15.08	14.92	14.72
45°	5.37	5.35	5.32	5.34	5.36	5.33	5.36
30°	2.75	2.81	2.78	2.83	2.84	2.82	2.89
15°	1.16	1.25	1.20	1.31	1.31	1.28	1.35
0°	0.63	0.71	0.72	0.74	0.80	0.78	0.86

FIGURES

Figure S1. Dimeric structure stabilized by the ring formed by two symmetry related structures of the compound 2.

Figure S2. Packing and hydrogen bond interactions of compound 9.