Supporting information

7

0.816 g

Pyridine-Based Hypercrosslinked Polymers as Support for Palladium Photocatalysts and Their Application in Suzuki–Miyaura Coupling Reactions

Yan Zhang, Le Zhang, Xiaoli Zhang, Didi Yang, Cheng Du, Liu Wan, Chaktong Au, Jian Chen*, Mingjiang Xie*

Hubei Key Laboratory for Processing and Application of Catalytic Materials, Huanggang Normal University, Huanggang 438000, China

*E-mail: chenjian@hgnu.edu.cn; xiemingjiang@smail.nju.edu.cn

Entry 2,2'-bipyridine Co-monomers AlCl₃ Sample 1 0.817 g Tetraphenylmethane (0.641 g)4.269 P2 2 0.813 g Triptycene (0.678 g)4.261 P3 Tetraphenylethylene (0.665 g)3 0.819 g 4.271 P4 4 Benzene (0.208 g)0.811 g 4.265 P5 5 0.812 g Anthracene (0.357 g)4.270 P6 6 0.817 g Pyrene (0.405 g) 4.267 P7

Table S1. Details for the synthesis of pyridine-based POFs materials^a

^a Pyridine-based POFs materials were synthesized by employing the method of P1

Entry	Sample	$S_{BET}^{a} \left(m^2 g^{-1}\right)$	Pore Volume ^b (ml g ⁻¹)
1	P1	846	0.47
2	P2	795	0.98
3	P3	1166	0.57
4	P4	1412	0.75
5	P5	1153	0.58
6	P6	1344	0.79
7	P7	988	0.53
8	P8	1227	1.07

Table S2. Textual properties of pyridine-based POFs materials

Perylene (0.505 g)

4.269

P8

^a Specific surface area calculated from nitrogen adsorption isotherms at 77.3 K using the BET equation. ^b Pore volume calculated from the nitrogen isotherms at $P/P_0=0.995$ and 77.3 K.

	_		
Entry	Base	Solvent (2mL)	Yield (%) ^[b]
1	K ₃ PO ₄ ·3H ₂ O	V _{Methanol} :V _{H2O} =3:2	99.2
2	K_3PO_4 ·3 H_2O	V_{DMF} : V_{H2O} =3:2	74.7
3	K_3PO_4 ·3 H_2O	$V_{DCM}:V_{H2O}=3:2$	76.9
4	K_3PO_4 ·3 H_2O	V _{1,4-dioxane} :V _{H2O} =3:2	87.7
5	K_3PO_4 ·3 H_2O	V _{Acetonitrile} :V _{H2O} =3:2	75.0
6	K_3PO_4 ·3 H_2O	V _{Ethylene acetate} :V _{H2O} =3:2	70.4
7	K_3PO_4 ·3 H_2O	V _{CHCl3} :V _{H2O} =3:2	73.7
8	K_3PO_4 ·3 H_2O	$V_{EtOH}:V_{H2O}=3:2$	96.6
9	КОН	$V_{EtOH}: V_{H2O}=3:2$	89.4
10	$NaH_2PO_4 \cdot 2H_2O$	$V_{EtOH}: V_{H2O}=3:2$	78.7
11	CH ₃ COONa	$V_{EtOH}: V_{H2O}=3:2$	90.0
12	CH ₃ ONa	$V_{EtOH}: V_{H2O}=3:2$	93.0
13	NaHCO ₃	$V_{EtOH}:V_{H2O}=3:2$	63.7
14	K_2CO_3	$V_{EtOH}:V_{H2O}=3:2$	95.0
15 ^[c]	K_3PO_4 ·3 H_2O	$V_{EtOH}:V_{H2O}=3:2$	-
16 ^[d]	-	$V_{EtOH}: V_{H2O}=3:2$	-
17[e]	$K_3PO_4 \cdot 3H_2O$	$V_{EtOH}:V_{H2O}=3:2$	0.1

Table S3. Optimization of reaction conditions for S-M reactions over Pd/P6 catalyst. [a]

 $-B(OH)_2 +$

[a] Reactions were carried out under blue light irradiation in mixed solvent at room temperature for 3 h with the reaction components in the following ratio: bromobenzene (mol)/phenylboronic acid (mol)/base (mol)/Pd (mol) = 1.0:1.5:3.0:0.00003. [b] Isolated yield of product. [c] P6 as catalyst (i.e., without Pd). [d] No K₃PO₄·3H₂O was used. [e] In darkness.

	-B(OH) ₂ +	Br -[Pd]	►< <u></u>	
Entry	Catalysts	Pd Content	Yield (%) ^[b]	TOF (h ⁻¹)
1	Pd/P1	0.34%	97.3	1015
2	Pd/P2	0.85%	97.2	406
3	Pd/P3	0.23%	86.6	1336
4	Pd/P4	0.20%	90.4	1603
5	Pd/P5	0.16%	90.3	2002
6	Pd/P6	0.16%	99.2	2198
7	Pd/P7	0.19%	93.7	1749
8	Pd/P8	1.20%	95.9	284

Table S4. Activity contrast of Suzuki reactions over the prepared Pd catalysts. [a]

[a] Reactions were carried out under blue light irradiation in methanol/H₂O mixed solvent at room temperature for 3 h with the reaction components in the following ratio: bromobenzene (mol)/phenylboronic acid (mol)/K₃PO₄·3H₂O (mol) /Pd (mol) =1.0:1.5:3.0: 0.00003. [b] Isolated yield of product.

Figure S1. ¹³C MAS NMR spectrum of polymer P6 in solid state

Figure S2. Pore width of the prepared pyridine-based POFs materials

Figure S3. SEM images of the prepared pyridine-based POFs materials

Figure S4. TEM images of the prepared pyridine-based POFs materials

Figure S5. XPS full scan spectra of fresh and used Pd/P6 catalyst

Figure S5. ¹H-NMR spectrums of products for S–M coupling reaction.