Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Supporting information

Synthesis and dye adsorption studies of $\{dibromo(1,1'-(1,2-ethanediyl)bis(3-methyl-imidazole-2-thione) dicopper(I)\}_n$ polymer and conversion it to CuO nanospheres for their photocatalytic and antibacterial applications

Azizolla Beheshti^a*, Elham Sadat Mousavifard^a, Behrooz Zargar^a, Peter Mayer^b, Seyedeh Elham Rezatofighi^c

^a Department of Chemistry, Faculty of Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran.

^b LMU München Department Chemie, Butenandtstrasse, 5-13 (D) 81377 München, Germany.

^c Department of Biology, Faculty of Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran.

Compound 1					
Cu1-Br1	2.5337(8)	Cu1-Br1'	2.5296(8)	Cu1-S1	2.3866(13)
Cu1-S1'	2.4066(13)				
S1-Cu1-S1'	108.48(5)	S1-Cu1-Br1	110.56(4)	S1-Cu1-Br1'	113.35(4)
S1'-Cu1-Br1	111.57(4)	S1'-Cu1-Br1'	110.38(4)	Br1-Cu1-Br1'	102.45(3)
Compound 2					
Cu1-Br1	2.3507(5)	Cu1-Br2	2.3891(5)	Cu1-Br3	2.3777(5)
Br1-Cu1-Br2	123.30(2)	Br1-Cu1-Br3	119.60(2)	Br2-Cu1-Br3	117.10(2)

Table S1. Selected bond lengths (Å) and bond angles (°) for compounds 1 and 2.

Figure S1. The PXRD patterns of **1** in simulated form (blue) and as-synthesized (black).

Figure S2. Color changes of the dye solutions of (a) the CR, (b) the AB, (c) the MG and (d) the VB and the precipitation 1 during adsorption process within 120 min.

Figure S3. The absorption curves vs. time for four selected dyes of (a) the CR, (b) the AB, (c) the MG and (d) the VB.

Figure S4. The emission spectra of the ebit (red) and 1 (blue) and when 1 was immersed in dye solutions of the AB (yellow), the CR (pink), the MG (orange) and the VB (green).

Figure S5. The IR spectra of the as-synthesized **1** (black) and when was immersed in dye solutions of the AB (blue), the CR (red), the MG (green) and the VB (purple).

Figure S6. The PXRD patterns of the as-synthesized **1** (black) and when was immersed in dye solutions of the CR (red), the AB (blue), the MG (green) and the VB (purple).

Figure S7. The adsorption kinetic curves of (a) Pseudo-first order, (b) Intraparticle diffusion, and (c) Elovich models for the AB dye.

Figure S8. The adsorption kinetic curves of (a) Pseudo-first order, (b) Intraparticle diffusion, and (c) Elovich models for the MG dye.

Figure S9. The adsorption kinetic curves of (a) Pseudo-first order, (b) Intraparticle diffusion, and (c) Elovich models for the AB dye.

Figure S10. The adsorption kinetic curves of (a) Pseudo-first order, (b) Pseudo-second-order and (c) Intraparticle diffusion models for the CR dye.

Table S2. The kinetics parameters for adsorption of different dyes from aqueous solutions by polymer **1** at room temperature.

			Par	ameters	
Kinetic models	Equations	The dye	Adj. R-square	q _e	K_1
	$1 \ k_1 \ 1$	AB	0.638	0.653	5.420
Daguda first andar	$\frac{a}{a} = \frac{a}{a} \frac{t}{t} + \frac{a}{a}$	MG	0.808	11.530	2.031
Pseudo-mist order	q_t q_e q_e	VB	0.331	4.032	-4.520
		CR	0.269	1.118	-6.688
	t - 1 + t		Adj. R-square	q _e	K ₂
Pseudo-second order	$\frac{\overline{q}_{t}}{q_{t}} - \frac{\overline{k_{2}q_{e}^{2}}}{k_{2}q_{e}^{2}} + \frac{\overline{q}_{e}}{q_{e}}$	CR -	0.859	2.240	0.007
			Adj. R-square	K _{dif}	x _i
		AB	0.616	-0.325	3.430
Intraparticle	1	MG	0.851	-2.029	17.378
diffusion	$q_t = k_{dif} t^2 + x_i$	VB	0.869	-1.038	13.468
unfusion		CR	0.907	-1.050	10.847
	lng h 1		Adj. R-square	а	b
Elovich	$q_t = \frac{lnu_e b_e}{lnt} + \frac{1}{lnt}lnt$	AB	0.795	0.007	-0.954
	$b_e b_e$	MG	0.964	0.000024	-0.492
		VB	0.777	0.00093	-0.359

Figure S11. The adsorption isotherm curves of (a) Freundlich and (b) Temkin models for the CR dye.

Figure S12. The adsorption isotherm curves of (a) Langmuir and (b) Temkin models for the MG dye.

Figure S13. The adsorption isotherm curves of (a) Langmuir and (b) Freundlich models for the AB dye.

Figure S14. The adsorption isotherm curves of (a) Langmuir and (b) Freundlich models for the VB dye.

Isotherm			Pa	rameters	
models	Equations	The dye	Adj. R-square	$q_{\rm m}$	K_1
		AB	0.942	3.057	0.390
Lanomuir	$\frac{c_e}{-} = \frac{1}{-} + \frac{c_e}{-}$	MG	0.615	-14.510	0.006
Dungmun	$q_e q_m k_l q_m$	VB	0.851	1.237	0.707
			Adj. R-square	n	\mathbf{k}_{f}
	1	AB	0.957	-0.902	7.000
Freundlich	$logq_e = logk_f + -logc_e$	VB	0.939	-0.189	1719.175
	, n	CR	0.915	3.099	3.074
			Adj. R-square	B_1	\mathbf{k}_{t}
Temkin	$q_e = B_1 ln k_t + B_1 ln c_e$	CR	0.924	4.146	29.100
		MG	0.873	6.478	0.055

Table S3. Evaluated model parameters of adsorption isotherms for different dyes by the polymer **1** at room temperature.

Figure S15.The UV-Vis adsorption spectra of the Rhodamine B as a function of irradiation time for (a) the blank, (b) the as-synthesized CuO nanospheres, (c) the H₂O₂ and (d) the commercial CuO with addition of H₂O₂.

Figure S16. The adsorption kinetic curves for (a) Pseudo-first order, (b) Pseudo-second-order,(c) Intraparticle diffusion and (d) Elovich kinetic models in the photodegradation of the RhB solution by the CuO nanospheres.

Kinetic models	Equations	Parameters	
	$1 k_1 1$	Adj. R-square	0.809
Pseudo-first order model	$\frac{1}{q_t} = \frac{1}{q_e t} + \frac{1}{q_e}$	q _e	0.604
		\mathbf{k}_1	-0.00036
		Adj. R-square	0.115
Pseudo-second order model	$\frac{t}{q_t} = \frac{1}{k_2 q_e^2} + \frac{t}{q_e}$	q _e	1.495
		K ₂	0.035
		Adj. R-square	0.865
Intraparticle	$\frac{1}{2}$	K _{dif}	0.955
diffusion model	$q_t = \kappa_{dif} t^2 + x_i$	X _i	-2.320
	lng h	Adj. R-square	0.935
Elovich model	$q_t = \frac{i n a_e b_e}{h} + \frac{1}{h} lnt$	а	0.000012
	~e Se	b	0.226

Table S4. The fitted kinetics parameters for photodegradation of the RhB solution by the CuO nanospheres.

Figure S17. The SEM image of the commercial CuO.