Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Content

- Table S1 Crystal data and structure refinement parameters of 1.
- Table S2 Selected bond lengths (Å) and angles (°) for 1.
- Table S3 Standard deviation and detection limit calculation for acetone, Fe³⁺ and Cu²⁺.
- Table S4 Standard deviation and detection limit calculation for Cr₂O₇²⁻, CrO₄²⁻ and NZF.
- Table S5 Comparison of various CPs sensors for the detection of acetone.
- Table S6 Comparison of various CPs sensors for the detection of Fe³⁺ and Cu²⁺ ions.
- **Table S7** Comparison of various CPs sensors for the detection of $Cr_2O_7^{2-}$ and CrO_4^{2-} ions.
- **Table S8** Comparison of various CPs sensors for the detection of NFT.
- Table S9 HOMO and LUMO energy levels of selected antibiotics and H₄L calculated by density
- functional theory (DFT) at B₃LYP/6-31G** level.
- Scheme S1 Schematic drawing of the ligands H₄L and BIP.
- Scheme S2 The coordination mode of L⁴⁻ ligand.
- Scheme S3 The structures of selected antibiotics.
- Figure S1 The IR spectra of 1.
- Figure S2 The 1D $[Zn(BIP)]_n$ chain in 1.
- Figure S3 The PXRD patterns of 1 before and after sensing tests.
- Figure S4 The TG curve of 1.
- Figure S5 The solid state fluorescent emission spectra for 1.
- Figure S6 (a) Emission spectra of 1 dispersed different solvent; (b) Emission spectra of 1 with different mixed solvents added acetone.
- Figure S7 UV-vis spectra of different solvent and the emission spectra of 1 in DMF solution.
- Figure S8 UV-vis spectra of different metal cations and the emission spectra of 1 in DMF solution.
- Figure S9 UV-vis spectra of different anions and the emission spectra of 1 in DMF solution.
- Figure S10 (a) UV-vis spectra of different antibiotics and the emission spectra of 1 in DMF
- solution; (b) The HOMO and LUMO energy levels for different antibiotics.

	1
Formula	$C_{42}H_{31}N_{11}O_{10}Zn_2$
Formula weight	980.56
Crystal system	Orthorhombic
Space group	P bcn
<i>a</i> (Å)	12.0157(13)
<i>b</i> (Å)	18.1093(19)
<i>c</i> (Å)	18.990(2)
α (°)	90
β (°)	90
γ (°)	90
Volume (Å ³)	4132.2(8)
Ζ	4
<i>T</i> (K)	296(2)
$D_{\text{calcd}}(\text{mg}\cdot\text{m}^{-3})$	1.576
μ (mm ⁻¹)	1.235
$R_{\rm int}$	0.0585
F(000)	2000
θ range (°)	$2.034 \le \theta \le 26.000$
Reflns. collected	41035
Data / restraints / parameters	4066 / 0 / 294
Goodness of fit on F^2	0.996
Final <i>R</i> indices $[I > 2\sigma(I)]$	$R_1 = 0.0470, wR_2 = 0.1281$
R indices (all data)	$R_1 = 0.0718, wR_2 = 0.1394$
Largest diff. peak and hole (e Å-3)	0.614 and -0.646

Table S1 Crystal data and structure refinement parameters of 1.

 $R_1 = \Sigma ||F_0| - |F_c|| / \Sigma |F_0|. \ \omega R_2 = \Sigma [w(F_0^2 - F_c^2)^2] / \Sigma [w(F_0^2)^2]^{1/2}$

	-		
	1		
Zn(1)-O(1)	1.935(3)	Zn(1)-O(4) ⁱⁱ	1.930(3)
Zn(1)-N(1)	2.029(3)	$Zn(1)-N(3)^{i}$	1.997(3)
O(1)-Zn(1)-N(1)	94.97(12)	O(1)-Zn(1)-N(3) ⁱ	107.15(14)
O(1)-Zn(1)-O(4) ⁱⁱ	116.03(12)	N(1)-Zn(1)-N(3) ⁱ	107.37(14)
N(1)-Zn(1)-O(4) ⁱⁱ	113.50(13)	$N(3)^{i}$ -Zn(1)-O(4) ⁱⁱ	115.64(14)

Table S2 Selected bond lengths (Å) and angles (°) for 1.

Symmetry codes: i: 1/2+x, -1/2+y, 1/2-z; ii: 3/2-*x*, -1/2+*y*, *z*.

	acetone	Fe ³⁺	Cu ²⁺
1	674.964623	676.910132	679.979652
2	674.713217	676.712265	679.571873
3	674.771354	677.099955	679.711342
4	674.572372	676.633277	679.791236
5	675.113253	677.094345	680.021875
Standard deviation (σ)	0.19066	0.1917	0.16753
Slope (m)	6.79×10^{4}	2.93×10^{4}	1.39×10 ⁴
Detection limit $(3\sigma/m)$	8.42×10 ⁻⁶	1.96×10 ⁻⁵	3.62×10 ⁻⁵

Table S3 Standard deviation and detection limit calculation for acetone, Fe^{3+} and Cu^{2+} .

	Cr ₂ O ₇ ²⁻	CrO ₄ ²⁻	NZF
1	680.438512	687.891131	640.928032
2	680.417532	687.654376	641.072251
3	680.731543	687.982273	640.701342
4	680.271586	687.512145	640.691276
5	680.831653	687.992165	641.1921367
Standard deviation (σ)	0.20932	0.19095	0.19869
Slope (m)	2.84×10 ⁴	1.87×10 ⁴	1.59×10 ⁴
Detection limit $(3\sigma/m)$	2.21×10 ⁻⁵	3.06×10-5	3.75×10-5

Table S4 Standard deviation and detection limit calculation for $Cr_2O_7^{2-}$, CrO_4^{2-} and NZF.

	Analyte	CPs-based fluorescent Materials	Quenching constant (K _{SV} , M ⁻¹)	Detection Limits (LOD)	Media	Ref
1		[Cd ₃ (cpota) ₂ (phen) ₃] _n ·5nH ₂ O	78 M ⁻¹	1.57×10^{-4} M	H ₂ O	18(a)
2		$[Cd_3(L^1)_2(BTB)_2(H_2O)] \cdot DMF \cdot H_2O$	3.3146	0.122 vol%	CH ₃ CN	18(b)
3		${[Cd(pta)] \cdot H_2O)}_n$	$\begin{array}{c} 6.37 \times 10^{3} \\ M^{-1} \end{array}$	0.0825 vol% (825 ppm)	H ₂ O	18(c)
4		$[Cd(L^1)(oba)]$ ·DMF	1.169 M ⁻¹		DME	19(4)
5		$[Zn_2(L^1)_2(HBPT)_2]$ ·H ₂ O	0.7006 M ⁻¹		DIVIF	18(0)
6	-	${[Cd(bct)(tib)] \cdot H_2O \cdot DMF}_n$	12.89 M ⁻¹		H ₂ O	18(e)
7		$[Zn_5(L)_4(H_2tpim)_2(FA)_4(H_2O)_2]_n$	3.948 mM ⁻¹			
8	acetone	[Zn(L)(Htpim)] _n	3.138 mM ⁻¹		DMF	18(f)
9		[Zn(L) (Htpim)] _n	1.731 mM ⁻¹			
10		${[Cd(H_2O)_4(4-BPDB)][BPDC]}_n$	13.57 M ⁻¹	0.15 mM	CH ₃ CN	18(g)
11		[Zn(L)(bpdc)]·1.6H ₂ O	0.4788	0.0478 vol%		10(1)
12		[Cd ₂ (L)(Hbptc) ₂]	0.4918	0.0465 vol%	DMF	18(h)
13		$[Zn_2(H_2BCA)_2(o-bimb)_2(H_2O)_2]_n$	$\begin{array}{c} 3.7\times10^4\\ M^{-1} \end{array}$	0.09 µM	ПО	19(i)
14		$\{[Zn(H_2BCA)(m-bib)] \cdot H_2O\}_n$	$\begin{array}{c} 2.0\times10^4\\ M^{-1} \end{array}$	0.13 μM	H ₂ U	18(1)

Table S5 Comparison of various CPs sensors for the detection of acetone.

 H_3 cpota = 2-(4-carboxyphenoxy)terephthalic acid, phen = 1,10-phenanthroline; L¹=1, 3-di(1Himidazol-4-yl)benzene, $H_3BTB=1,3,5$ -tri(4-carboxyphenyl)benzene; $H_2pta = 2$ -(4-pyridyl)terephthalic acid; L¹=1,3-di(1H-imidazol-4-yl)benzene, $H_2oba = 4,4'$ -oxybis-(benzoic acid), $H_4BPTC =$ biphenyl-3,3',5,5'-tetracarboxylic acid; $H_2bct=3,5$ -bis(4'-carboxyphenyl)-1,2,4-triazole, tib = 1,3,5-tris(1-imidazolyl)benzene; $H_2L=5$ -nitroisophthalic acid, Htpim=2,4,5-triIJ4-pyridyl)imidazole, HFA = formic acid; 4-BPDB=1,4-bis(4-pyridyl)-2,3-diaza-1,3-butadiene, $H_2BPDC=4,4'$ -biphenyldicarboxylic acid;

 H_2 bpdc =4,4'-benzophenonedicaboxylic acid, H_3 bptc = biphenyl-2,4',5-tricarboxylic acid, L=1,4-di(1H-imidazol-4-yl)benzene;

H₂BCA=bis(4-carboxybenzyl)amine, o-bimb = 1,2-bis(imidazol-1-ylmethyl) benzene), m-bib = 1,3-bis(1-imidazoly)benzene.

	Analyte	CPs-based fluorescent Materials	Quenching constant (K _{SV} , M ⁻¹)	Detection Limits (LOD)	Media	Ref
1		[Mg ₂ (APDA) ₂ (H ₂ O) ₃]·5DMA·5H ₂ O	2.06×10^{4}	152 ppb	DMF	19(a)
2		${Eu_2L_3(DMF)} \cdot 2DMF$	4×10^4	6.62 μM	H ₂ O	19(b)
3		[Ag(CIP ⁻)]	7.1×10^{3}	$1.2 \times 10^{-6} \mathrm{M}$	H ₂ O	19(c)
4	Fe ²⁺	$[Zn(ACA)_4] \cdot CB[6] \cdot [NH_2(CH_3)_2] \cdot 8H_2$ O	1.088×10^{4}	$9.5 \times 10^{-7} \mathrm{M}$	H ₂ O	19(d)
5		${[Eu_2(L)_2(H_2O)_2] \cdot 5H_2O \cdot 6DMAC}_n$	5941 M	10 ⁻⁵ mM	H ₂ O	19(e)
6		$[Ln_2(L^1)_2(H_2O)_4] \cdot 2H_2O$		10 ⁻⁶ M	H ₂ O	19(f)
7		[Tb(HMDIA)(H ₂ O) ₃]·H ₂ O	$1.6 \times 10^4 \text{ M}^{-1}$		H ₂ O	19(g)
1		$\label{eq:acd} \begin{split} &\{[BaCd(\mu_6\text{-tp})_{1.5}(\mu_2\text{-}Cl)(H_2O) \\ &(DMF)_2] \cdot 0.75H_2O\}_n \end{split}$	1.15×10 ⁴ M ⁻¹	0.26 µM	H ₂ O	20(a)
2		${Cd(INA)(pytpy)(OH) \cdot 2H_2O}_n$	1.3×10^5 M ⁻¹	$\begin{array}{c} 3.98\times10^{-3}\\ mM \end{array}$	H ₂ O	20(b)
3		[Cd(L)]·2DMF	4.1×10^{3} M ⁻¹		DMF	20(c)
4	Cu ²⁺	$\{[Zn(btca)(py)_2]\}_n$	2.92×10^4 M^{-1}	3 ppm	H ₂ O	20(d)
5		$\{Eu_2(TBrTA)_3(H_2O)_8 \cdot 2H_2O\}_n$	4612.0 M ⁻¹	7.52 × 10 ⁻⁵ mol/L	ethanol	20(e)
6		$ \{ [Ln_3Ag_3(BPDC)_5(OX)(H_2O)_7] \cdot \\ 7H_2O \}_n $	4674 M ⁻¹		ethanol	20(f)
7		Cd ₂ (dhtp)(DMF) ₂	1806 M ⁻¹		H ₂ O	20(g)
8		[Cd(L)(TPOM) _{0.75}]⋅xS	17890 M ⁻¹		H ₂ O	20(h)

Table S6 Comparison of various CPs sensors for the detection of Fe³⁺ and Cu²⁺ ions.

H₂APDA= 4,4'-(4-aminopyridine-3,5-diyl)dibenzoic acid;

L=(6-[1-(4-carboxyphenyl)-1H-1,2,3-triazol-4-yl]nicotinic acid;

HCIP = 4-(4-carboxylphenyl)-2,6-di(4-imidazol-1-yl)phenyl)pyridine;

CB[6]=cucurbit[6]uril, HACA = anthracene-9-carboxylic acid;

 $H_3L = 4,4'-(((5-carboxy-1,3-phenylene)bis(azanediyl))bis(carbonyl))$ dibenzoic acid, DMAC =

N,N'-dimethylacetamide;

H₄MDIA=5,5'-methylenediisophthalic acid;

 H_2 tp = terephthalic acid;

pytpy = 4'-(4-Pyridinyl)-2,2':6',2"-terpyridine, INA = Isonicotinic acid;

L= 5,5',5"-((1,3,5-triazine-2,4,6-triyl)tris(azanediyl))tris(3-methylbenzoic acid);

H₂btca = benzotriazole-5-carboxylic acid, py = pyridine;

H₂TBrTA= tetrabromoterephthalic acid;

H₂BPDC=2,2'-bipyridine-3,3'-dicarboxylic acid, H₂OX= oxalic acid; H₂dhtp =2,5-dihydroxy-1,4-

benzenedicarboxylic acid;

TPOM = tetrakis(4-pyridyloxy-methylene) methane.

	Analyte	CPs-based fluorescent Materials	Quenching constant (K _{SV} , M ⁻¹)	Detection Limits (DL)	Media	Ref
1		[H ₂ N(CH ₃) ₂] ₂ [Zn ₂ L(HPO ₃) ₂]	4.44 ×10 ⁴	1.09×10^{-3} mM	H ₂ O	20(a)
2		$[Tb(ppda)(bdc)_{0.5}(C_2H_5OH)(H_2O)]_n$	4.03×10^{3}	$5.0 \times 10^{-5} \mathrm{M}$	DMF	20(b)
3		${[(CH_3)_2NH_2]_2 [Zn_5 (TDA)_4TZ)_4]}$ $\Box 4DMF_n$	6.77×10^{3}	7.48 μmol L ⁻¹	H ₂ O	20(c)
4	Cr ₂ O ₇ ^{2–}	[Cd ₃ (cpota) ₂ (phen) ₃] _n ·5nH ₂ O	1.21×10^{4}	3.70 × 10 ⁻⁷ M	H ₂ O	20(d)
5		$[Zn(NH_2-bdc)(4,4'-bpy)]$	7.62×10^{3}	1.30 µM	H ₂ O	20(e)
6		$\{[Cd_2L_2(H_2O)_4] \cdot H_2O\}_n$	1.25×10^{4}	3.7 µM	H ₂ O	20(6)
7		$\{[Zn_{2}L_{2}(H_{2}O)_{4}]\cdot H_{2}O\}_{n}$	1.77×10^{4}	2.6 µM	H ₂ O	20(1)
1		$[Cd_{1.5}(L)_2(bpy)(NO_3)]$ ·2DMF·2H ₂ O	1.73×10^{4}	280 ppb	H ₂ O	21(a)
2		[Zn ₂ (TPOM)(NDC) ₂]·3.5H ₂ O	7.81×10^{3}	2.50 μM	H ₂ O	21(b)
3		$ \{ [Zn(L)_{0.5}(bimb)] \cdot 2H_2O \cdot 0.5(CH_3)_2N \\ H \}_n $	5.04×10^{4}	0.60 µM	H ₂ O	21(c)
4	CrO ₄ ²⁻	[Ni(ppvppa)(5-NO ₂ -1,3- BDC)(H ₂ O)]· 0.5MeCN	210526	0.09 ppb	H ₂ O	21(d)
5		$\{[Cd_2L_2(H_2O)_4] \cdot H_2O\}_n$	1.21×10^{4}	3.8 µM	ПО	21(a)
6		$\{[Zn_2L_2(H_2O)_4]\cdot H_2O\}_n$	1.95×10^{4}	2.3 μM	H ₂ O	21(e)
7		[Eu ₇ (mtb) ₅ (H ₂ O) ₁₆]·NO ₃ ·8DMA ·18H ₂ O	3.3× 10 ⁴		H ₂ O	21(f)

Table S7 Comparison of various CPs sensors for the detection of $Cr_2O_7^{2-}$ and CrO_4^{2-} ions.

H₂L=2',3',5',6'-tetramethyl-[1,1':4',1"-terphenyl]-4,4"-dicarboxylic acid;

H₂ppda=4-(pyridin-3-yloxy)-phthalic acid, H₂bdc=terephthalic acid;

H₂TDA = thiophene-2,5-dicarboxylic acid, HTZ = 1H-1,2,4-Triazole;

 H_3 cpota = 2-(4-carboxyphenoxy)terephthalic acid, phen = 1,10-phenanthroline;

NH₂-H₂bdc = 2-amino-1,4-benzenedicarboxylic acid, 4,4'-bpy = 4,4'-bipyridine;

 $H_2L = 5-(1H-1,2,4-triazol-1-yl)$ isophthalic acid);

HL = 4-(4-carboxyphenyl)-1,2,4-triazole, bpy = 4,4'-bipyridine;

TPOM = tetrakis(4-pyridyloxymethylene)methane, $H_2ndc = 2,6$ -naphthalenedicarboxylic acid;

ppvppa = dipyridin-2-yl-[4-(2-pyridin-4-yl-vinyl)-phenyl]-amine, 5-NO₂-1,3-H₂BDC = 5nitroisophthalic acid.

 $H_2L = 5-(1H-1,2,4-triazol-1-yl)$ isophthalic acid;

 $H_4mtb = 4$ -[tris(4-carboxyphenyl)methyl]benzoic acid.

	Analyte	CPs-based fluorescent Materials	Quenching constant (K _{SV} , M ⁻¹)	Detection Limits (LOD)	Media	Ref
1		${[Cd_3(TDCPB) \cdot 2DMAc] \cdot DMAc \cdot 4H_2O]_n}$	1.05×10^{5}		DMA	22(a)
2		${[Tb(TATMA)(H_2O) \cdot 2H_2O]_n}$	3.35×10^{4}		H ₂ O	22(b)
3		$[Zn(L)_2]$ ·CH ₂ Cl ₂ ·CH ₃ OH	1.58×10^{4}		CH ₃ OH	22(c)
4	NFT	$[Cd(tptc)_{0.5}(o-bimb)]_n$	3.4×10^{4}		DMF	22(4)
5		[Cd(H ₂ tptc) _{0.5} (mbimb)(Cl)] _n	2.6×10^{5}		DMF	22(d)
6		[TbL·2H ₂ O] _n	5.26×10^{4}		H ₂ O	22(e)
7		$[Zn_2(azdc)_2(dpta)] \cdot (DMF)_4$	7.14×10^{4}		DMF	22(f)

Table S8 Comparison of various CPs sensors for the detection of NFT.

TADA = 3,3'-((6-hydroxy-1,3,5-triazine-2,4-diyl)bis(azanediyl))dibenzoate;

 $H_3L = 4-(2,4,6-tricarboxyl phenyl)-2,2':6',2''- terpyridine;$

 $H_3L = 5$ -(4-carboxy-phenoxymethyl)-isophthalic acid;

H2NDC= 1,4-naphthalenedicarboxylic acid;

H₃TATMA= 4, 4',4"-s-triazine-1,3,5-triyltri-m-aminobenzoate.

Table S9 HOMO and LUMO energy levels of selected antibiotics and H_4L calculated by density

	HOMO (eV)	LUMO (eV)	Band Gap (eV)
NFT	-6.70	-3.12	3.58
DTZ	-6.93	-2.32	4.61
SDZ	-6.20	-1.02	5.18
САР	-7.24	-2.52	4.72
PCL	-6.49	-0.50	5.99
H ₄ L	-6.88	-2.53	4.35

functional theory (DFT) at B₃LYP/6-31G** level.

Scheme S1 Schematic drawing of the ligands H₄L and BIP.

Scheme S2 The coordination mode of L^{4-} ligand.

Scheme S3 The structures of selected antibiotics.

Figure S1 The IR spectra of 1.

Figure S2 The 1D $[Zn(BIP)]_n$ chain in 1.

Figure S3 The PXRD patterns of 1 before and after sensing tests.

Figure S5 The solid state fluorescent emission spectra for 1.

Figure S6 (a) Emission spectra of 1 dispersed different solvent; (b) Emission spectra of 1 with

different mixed solvents added acetone.

Figure S7 UV-vis spectra of different solvent and the emission spectra of 1 in DMF solution.

Figure S8 UV-vis spectra of different metal cations and the emission spectra of 1 in DMF solution.

Figure S9 UV-vis spectra of different anions and the emission spectra of 1 in DMF solution.

Figure S10 (a) UV-vis spectra of different antibiotics and the emission spectra of 1 in DMF solution; (b) The HOMO and LUMO energy levels for different antibiotics.