Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Electronic Supplementary Material (ESI) for New Journal of Chemistry.

Supporting Information

An efficient water-soluble fluorescent chemosensor based on furan

Schiff base functionalized PEG for sensitive detection of Al³⁺ in pure

aqueous solution

Liping Bai, Yuhang Xu, Leixuan Li, Farong Tao, Shuangshuang Wang, Liping Wang* and Guang Li*

School of Materials Science and Engineering, Liaocheng University, Liaocheng 252059, China

* Corresponding authors, E-mail: wangliping5@163.com, lglzsd@126.com

Fig. S1 ¹H NMR spectrum of FB in DMSO-*d*₆.

Fig. S2 ¹³C NMR spectrum of FB in DMSO- d_6 .

Fig. S5 UV-Vis absorption spectra of PEGFB (10 μ M) in the absence and presence of 2 equiv. of Al³⁺ in aqueous solution.

Fig. S6 UV-vis absorption spectra of PEGFB (10 μ M) upon addition of 2.0 equiv. of different metal ions (Al³⁺, Ba²⁺, Ce³⁺, Cd²⁺, Co²⁺, Cr³⁺, Cu²⁺, Fe³⁺, Hg²⁺, In³⁺, K⁺, Mn²⁺, Na⁺, Ni²⁺, Pb²⁺ and Zn²⁺) in 100% water.

Fig. S7 The Benesi-Hildebrand plot of PEGFB with Al³⁺ ions from UV-Vis titration profile for determination of binding constant.

Fig. S8 FT-IR titration spectra of PEGFB with Al³⁺.

Fig. S9 ¹H NMR titration spectra of PEGFB with Al³⁺.

Fig. S10 Job's plot for determining the stoichiometry of PEGFB with Al³⁺.

Fig. S11 The Benesi-Hildebrand plot of PEGFB with Al³⁺ ions from fluorescence titration profile for determination of binding constant.

Fig. S12 The linear of fluorescence intensity and concentration of Al³⁺ for the determination of the detection limit.

Fig. S13 Fluorescence spectral change of the PEGFB solution upon the sequential addition of Al^{3+} (1 equiv.) and EDTA (1 equiv.).

Structure	Detection limit (M)	Binding constant (M ⁻¹)	Solvent	Ref
	4.08 × 10 ⁻⁸	2.139 × 10 ⁵	DMF/H ₂ O (1/9, v/v,)	1
	8.08 × 10 ⁻⁸	$1.57 imes 10^5$	methanol	2
	1.37 × 10 ⁻⁷	3.01 × 10 ⁴	methanol	3
	3.19 × 10 ⁻⁸	1.21 × 10 ⁴	DMF/methanol (1/1, v/v)	4
	3.48 × 10 ⁻⁸	1.30×10^4	ethanol/H ₂ O $(3/1, v/v)$	5
	2.78 × 10 ⁻⁶	$1.9 imes 10^4$	ethanol	6
	2 × 10 ⁻⁷	$3.68 imes 10^4$	ethanol	7
	6×10^{-7}	1×10^5	DMSO/H ₂ O $(9/1, v/v)$	8

References

- 1 S. Zeng, S. J. Li, X. J. Sun, M. Q. Li, Z. Y. Xing and J. L. Li, *Inorg. Chim. Acta*, 2019, **486**, 654-662.
- 2 Y. Wang, Z. Y. Ma, D. L. Zhang, J. L. Deng, X. Chen, C. Z. Xie and J. Y. Xu, *Spectrochim. Acta A*, 2018, **195**, 157-164.
- 3 H. Tian, X. Qiao, Z. L. Zhang, C. Z. Xie, Q. Z. Li and J. Y. Xu, *Spectrochim. Acta A*, 2019, **207**, 31-38.
- 4 C. J. Liu, Z.Y. Yang, L. Fan, X. L. Jin, J. M. An, X. Y. Cheng and B. D. Wang, J. *Lumin.*, 2015, **158**, 172-175.
- 5 B. J. Pang, C. R. Li and Z. Y. Yang, J. Photoch. Photobio., A 2018, 356, 159-165.
- 6 B. Das, S. Dey, G.P. Maiti, A. Bhattacharjee, A. Dhara and A. Jana, *New J. Chem.*, 2018, **42**, 9424-9435.
- 7 Y. J. Liu, F. F. Tian, X. Y. Fan, F. L. Jiang and Y. Liu, *Sens. Actuators B*, 2017, **240**, 916-925.
- 8 Z. Kejík, R. Kaplánek, M. Havlík, T. Bříza, D. Vavřinová, B. Dolenský, P. Martásek and V. Král, *J. Lumin.*, 2016, **180**, 269-277.
- 9 S. Sahana, S. Bose, S. K. Mukhopadhyay and P. K. Bharadwaj, J. Lumin., 2016, 169, 334-341.