Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

New Journal of Chemistry

Supporting Information

The recyclable heterogeneous nanocatalyst of copper-grafted natural asphalt sulfonate (NAS@Cu): Characterization, synthesis and application in the Suzuki-Miyaura coupling reaction

Homa Kohzadi¹ and Mohammad Soleiman-Beigi^{2*}

^{1,2}Department of Chemistry Basic of Sciences Faculty, Ilam University, PO Box 69315–516, Ilam, Iran

* E-mail: SoleimanBeigi@yahoo.com

Supporting information includes Elemental mapping for NAS@Cu, SEM images of NA, Na-NAS, NAS@Cu and NAS@Cu after recovery, FT-IR spectra of natural asphalt and natural asphalt sulfonate, TEM image of NAS@Cu , selected original spectrums and Selected spectral data of the synthesized biphenyl derivatives.

TABLE OF CONTENTS

Contents

Page

Figure S1. Elemental mapping for NAS@Cu	3
Figure S2. SEM images of NA and Na- NAS	4
Figure S3. SEM images of NAS@Cu and NAS@Cu after recovery	5
Figure S4. FT-IR spectra of natural asphalt and natural asphalt sulfonate	6
Figure S5.TEM image of NAS@Cu	7
Figure S6 ¹ H NMR spectrum of 1,1'-Biphenyl (CDCl ₃ , 400 MHz)	8
Figure S7. 13 C NMR spectrum of of 1,1'-Biphenyl (100 MHz, CDCl ₃)	9
Figure S8. ¹ H NMR spectrum 4-Methoxy-1,1'-biphenyl (CDCl ₃ , 400 MHz)	10
Figure S9. ¹³ C NMR spectrum of 4-Methoxy-1,1'-biphenyl (100 MHz, CDCl ₃)	11
Figure S10. ¹ H NMR spectrum of 4-Methyl-1,1'-biphenyl (CDCl₃, 400 MHz)	12
Figure S11. 13 C NMR spectrum of 4Methyl -1,1'-biphenyl (100 MHz, CDCl ₃)	13
Figure S12. ¹ H NMR spectrum of 4-Nitro-1,1'-biphenyl (CDCl ₃ , 400 MHz)	14
Figure S13. ¹³ C NMR spectrum of 4-Nitro-1,1'-biphenyl (100 MHz, CDCl ₃)	15
Figure S14 ¹ H NMR spectrum of 2-PhenyInaphthalene (CDCI ₃ , 400 MHz)	16
Figure S15. ¹³ C NMR spectrum of 2-PhenyInaphthalene (100 MHz, CDCl ₃)	17
Figure S16. ¹ H NMR spectrum of [1,1'- Biphenyl]-4-carbonitrile (CDCl ₃ , 400 MHz)	18
Figure S17. ¹³ C NMR spectrum of [1,1'- Biphenyl]-4-carbonitrile (100 MHz, CDCl ₃)	19
Selected spectral data	20
References	21

10µm

10µm

٢

Figure S3. SEM images of NAS@Cu and NAS@Cu after the recovery

Det: InBeam

WD: 4.84 mm BI: 7.00 View field: 1.04 μm Date(m/d/y): 04/18/19

SEM MAG: 200 kx

200 nm

MIRA3 TESCAN

Figure S4. FT-IR spectra of natural asphalt and natural asphalt sulfonate

Figure S5.TEM image of NAS@Cu

Fig S6. ¹H NMR spectrum of 1,1'-Biphenyl

Fig S7. ¹³C NMR spectrum of 1,1'-Biphenyl

Fig S8. ¹H NMR spectrum 4-Methoxy-1,1'-biphenyl

Fig S9. ¹³C NMR spectrum of 4-Methoxy-1,1'-biphenyl

Fig S10. ¹H NMR spectrum of 4-Methyl-1,1'-bipheny

Fig S11. ¹³C NMR spectrum of 4-Methyl-1,1'-bipheny

Fig S12. ¹H NMR spectrum of 4-Nitro-1,1'-biphenyl

Fig S13. ¹³C NMR spectrum of 4-Nitro-1,1'-biphenyl

Fig S14. ¹H NMR spectrum of 2-Phenylnaphthalene

Fig S15. ¹³C NMR spectrum of 2-Phenylnaphthalene

Fig S16. ¹H NMR spectrum of [1,1'- Biphenyl]-4-carbonitrile

Fig S17. ¹³C NMR spectrum of [1,1'- Biphenyl]-4-carbonitrile

Selected spectral data

1,1'-Biphenyl: White solid, Mp (°C): 63-65, ¹ ¹H NMR (400 MHz, CDCl₃): δ H= 7.41 (t, J= 8Hz, 2H), ¹³CNMR (100 MHz, CDCl3): δ = 127.2, 127.3, 129.8, 141.3.

4-Methoxy-1,1'-biphenyl: White solid, Mp (°C):83-85, ² ¹H NMR (400 MHz, CDCl₃): δH= 3.91(s, 3H), 7.03-7.05 (d, J= 8Hz, 2H), 7.47 (t, J= 8Hz, 2H), 7.60 (t, J= 8Hz, 2H) ppm. 13CNMR (100 MHz, CDCl₃): δ = 55.4, 114.2, 126.7, 126.8, 128.2, 128.8, 133.8, 140.9, 159.1.

4-Nitro-1,1'-biphenyl: Pale yellow solid, Mp (°C): 110-114, ¹ ¹ H NMR (400 MHz, CDCl₃): δH= 7.29-7.78 (m, 5H), 7.76-7.78 (d, J= 8 Hz, 2H), 8.29-8.50 (d, J= 8Hz, 2H) ppm. ¹³CNMR (100 MHz, CDCl₃): δ = 124.15, 127.43, 127.84, 128.96, 129.19, 138.80, 147.09, 147.67.

2-PhenyInaphthalene: oil, ³ ¹H NMR (400 MHz, CDCl₃): δ H= 7.54-7.58 (m,3H), 7.60-7.70 (m, 6H), 7.98-8.01 (m, 1H) ppm. ¹³CNMR (100 MHz, CDCl₃): δ = 125.55, 125.93, 126.19, 126.73, 127.39, 127.59, 127.80, 128.32, 128.43, 130.24, 131.77, 133.95, 140.40, 140.91.

[1,1'-Biphenyl]-4-carbonitrile: White solid, Mp (°C) 80-82, ¹ 1H NMR (400 MHz, CDCl₃): δ H= 7.46 (t, J= 8Hz, 1H), 7.52 (t, J= 8Hz, 2H), 7.62-7.64 (d, J= 8 Hz, 2H), 7.71-7.77 (q, J= 8Hz, 4H) ppm. ¹³CNMR (100 MHz, CDCl₃): δ = 110.92, 119.01, 127.27, 127.77, 128.70, 129.15, 132.64, 139.20, 145.70.

4-Methyl-1,1'-bipheny: White solid, Mp (°C): 44-46, ¹ ¹H NMR (400 MHz, CDCl₃): δH= 2.51(s, 3H), 7.36 (t, J= 8Hz, 2H), 7.54 (t, J= 8Hz, 2H), 7.61 (t, J= 8Hz, 2H), 7.69-7.71 (d, J= 8Hz, 2H) ppm.¹³CNMR (100 MHz, CDCl₃): δ =21.1, 126.9, 127.1, 128.9, 129.5, 136.8, 137.1, 138.4, 141.2.

References

- 1. Q. Zhang, H. Su, J. Luo and Y. Wei, Tetrahedron. 14 (2013) 447-54.
- 2. J. F. Wei, J. Jiao, J. J, Feng, J. Lv, X. R. Zhang, X. Y. Shi and Z. G. Chen, J. Org. Chem. 74 (2009) 6283-6.
- 3. L. Bai and J.X. Wang, Adv. Synth. Catal. 25 (2008) 315-20.