Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Electronic Supplementary Information

Unusual Chemistry of Cu(II) Salan Complexes: Synthesis, Characterization and

Superoxide Dismutase Activity

Satabdi Roy,^a Atanu Banerjee,^a Sudhir Lima,^a Adolfo Horn Jr.,^{b,c} Raquel M. S. N. Sampaio,^b Nádia Ribeiro,^d Isabel Correia,^d Fernando Avecilla,^e M. Fernanda N. N. Carvalho,^d Maxim L. Kuznetsov,^d João Costa Pessoa^{*d} Werner Kaminsky ^f and Rupam Dinda^{*a}

^a Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India.

^b Laboratório de Ciências Químicas, Universidade Estadual do Norte Fluminense Darcy Ribeiro, 28013-602, Campos do Goytacazes, RJ, Brazil.

^c Universidade Federal de Santa Catarina, Campus Universitário Trindade, 88040-900 Florianópolis, SC, Brazil.

e Grupo Xenomar, Centro de Investigacións Científicas Avanzadas (CICA), Departamento de Química, Facultade de Ciencias, Universidade da Coruña, Campus de A Coruña, 15071A Coruña, Spain.

^f Department of Chemistry, University of Washington, Seattle, Washington 98195, United States

^d Centro de Química Estrutural and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001, Lisboa, Portugal

Electronic spectral data for complexes

Table S1 Electronic spectral data for complexes 1-4 in DMSO.

Complexes	$\lambda_{max}/nm (\epsilon/M^{-1} cm^{-1})$		
1	296 (15109), 352 (2121), 424 (2445), 609 (657)		
2	286 (23121), 344 (2023), 424 (2788), 613 (589)		
3	295 (20338), 397 (1555), 429 (2223), 605 (770)		
4	294 (11384), 371 (1563), 419 (2312), 601 (431)		

Supplementary single crystal X-ray diffraction data.

Table S2(a) Selected bond parameters in H_2L^3 .

Bond lengths (Å)						
O(1)-C(10)	1.367(2)	N(1)-C(4)	1.485(3)			
O(2)-C(21)	1.367(2)	N(1)-C(3)	1.461(2)			
N(2)-C(25)	1.468(3)	N(2)-C(3)	1.465(2)			
	Bond angles (°)					
N(1)-C(3)-N(2)	104.44(15)	N(2)-Cu(1)-O(2)	92.2(2)			

Table S2(b) Intramolecular hydrogen bonds in compound H_2L^3 .

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)	
O(1)-H(1O)N(1) 0.84(3)	1.83(3)	2.615(2)	155(3)	
O(2)-H(2O)N(2) 0.90(3)	1.80(3)	2.628(2)	153(3)	

[Cu(L ¹)(DMSO)] (1A)						
Bond lengths (Å)						
N(1)-Cu(1)	2.054(7)	N(2)-Cu(1)	2.047(5)			
O(1)-Cu(1)	1.863(5)	O(2)-Cu(1)	1.901(5)			
O(3)-Cu(1)	2.41(1)					
		Bond angles (°)				
N(1)-Cu(1)-N(2)	86.0(3)	N(2)-Cu(1)-O(2)	92.2(2)			
N(1)-Cu(1)-O(1)	91.3(2)	N(2)-Cu(1)-O(3)	89.7(3)			
N(1)-Cu(1)-O(2)	162.8(2)	O(1)-Cu(1)-O(2)	88.2(2)			
N(1)-Cu(1)-O(3)	97.3(3)	O(1)-Cu(1)-O(3)	98.1(3)			
N(2)-Cu(1)-O(1)	172.0(2)	O(2)-Cu(1)-O(3)	99.8(3)			
N(1)-Cu(1)-N(2)	86.0(3)	N(2)-Cu(1)-O(2)	92.2(2)			
		[Cu(L ^{3A})] ₂ (3)				
Bond lengths (Å)						
O(1)-Cu(1)	1.971(8)	N(1)-Cu(1)	1.968(10)			
O(2)-Cu(1)	1.909(8)	N(2)-Cu(1)	2.042(9)			
O(1 ⁱ)-Cu(1)	2.786(10)	O(3)-Cu(1)	2.544(9)			
Cu(1)-Cu(1 ⁱ)	3.732(4)	Cu(2)-Cu(2 ⁱ)	3.381(3)			
		Bond angles (°)				
O(2)-Cu(1)-N(1)	151.5(4)	O(2)-Cu(1)-O(1)	100.2(3)			
N(1)-Cu(1)-O(1)	91.3(4)	O(2)-Cu(1)-N(2)	91.9(4)			
N(1)-Cu(1)-N(2)	86.2(4)	O(1)-Cu(1)-N(2)	158.7(4)			
	[Cu(L ^{4A})] (4)					
	Bond lengths (Å)					
N(2)-Cu(1)	2.002(2)	O(2)-Cu(1)	1.896(3)			
N(1)-Cu(1)	2.052(3)	O(1)-Cu(1)	1.878(2)			
	Bond angles (°)					
N(2)-Cu(1)-N(1)	85.8(1)	N(1)-Cu(1)-O(2)	173.4(1)			
N(2)-Cu(1)-O(2)	92.9(1)	N(1)-Cu(1)-O(1)	93.2(1)			
N(2)-Cu(1)-O(1)	170.2(1)	O(2)-Cu(1)-O(1)	89.1(1)			

Table S3 Selected geometric parameters (Å, °) for the Cu-complexes 1A, 3 and 4

¹H and ¹³C NMR spectra of ligand precursor

Fig. S1 ¹H NMR (A) and ¹³C NMR (B) spectrum of H_2L^3 in CDCl₃ (* marks the solvent signal).

ESI-MS spectra

Fig. S2(a) ESI-MS spectrum of H_2L^3 in the negative ion mode (MeOH solution).

Fig. S2(b) ESI-MS spectrum of H_2L^3 in the positive ion mode (MeOH solution).

Fig. S3 Proposed molecular formulae for species found in the ESI-MS spectrum of 2.

Fig. S4 Proposed molecular formulae for deaminated species found in the ESI-MS spectrum of 2.

Fig. S5 ESI-MS spectrum of 2 in the positive ion mode (MeOH solution).

Fig. S6 ESI-MS spectrum of **3** in the positive ion mode (MeOH solution).

Fig. S7 First derivative EPR spectra of frozen solutions of the Cu-complexes 1-4 in DMF (ca. 3 mM), measured at ca. 100 K.

Fig S8 X-band EPR spectrum of **4** evidencing the superhyperfine structure in the perpendicular region resulting from spincoupling of the unpaired electron with two ¹⁴N nuclei.

Additional Electrochemical data

a)

b)

Fig. S9 Cyclic voltammogram of complex **1**. (a) anodic scan; (b) cathodic scan. The cyclic voltammograms were obtained in NBu₄BF₄/DMF (0.1 M) at 200 mV/s.

b)

Fig. S10 Cyclic voltammogram of complex **2**. (a) anodic scan; (b) cathodic scan. The cyclic voltammograms were obtained in NBu_4BF_4/DMF (0.1M) at 200 mV/s.

Fig. S11 Cyclic voltammogram of complex **3**. (a) anodic scan; (b) cathodic scan. The cyclic voltammograms were obtained in NBu₄BF₄/DMF (0.1M) at 200 mV/s.

Fig. S12 Cyclic voltammogram of complex **4**. (a) anodic scan; (b) cathodic scan. The cyclic voltammograms were obtained in NBu_4BF_4/DMF (0.1M) at 200 mV/s.

Fig. S13 ORTEP diagram of $[Cu(L^{3A})]_2$ (3) showing the weak interactions 50% probability level (Bond distance, $Cu(1)-Cu(1^i)=3.732(4)$ Å)

Evaluation of Superoxide dismutase activity

Fig. S14 Plot of V/v vs. complex concentration of $[CuL^1]$ (1) employed for IC_{50} calculation. V/v is the ratio between the NBT reduction rate in the absence (V) and in the presence (v) of different concentration of complex 1. The IC_{50} is the value at V/v = 2.

Fig. S15 Plot of V/v vs. complex concentration of $[(CuL^{3A})]_2$ (**3**) employed for IC_{50} calculation. V/v is the ratio between the NBT reduction rate in the absence (V) and in the presence (v) of different concentration of complex **3**. The IC_{50} is the value at V/v = 2.