Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

1

1*H*-Benzimidazole-5-Carboxamidines Derivatives: Design, Synthesis, Molecular Docking, DFT and Antimicrobial Studies

Meryem Erol,*^a Ismail Celik,^{a,b} Ozlem Temiz-Arpaci,^b Hakan Göker,^b Fatma Kaynak-Onurdag,^c and Suzan Okten^c

^{a.} Erciyes University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Kayseri, Turkey

^b Ankara University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Ankara, Turkey

^c Trakya University, Faculty of Pharmacy, Department of Pharmaceutical Microbiology, Edirne, Turkey

SUPPORTING INFORMATION Table of Content:

No.	Contents	Page no.
1	Table S1. List of synthesized compounds	2
2	Table S2. Calculated electronic properties (M1-M15)	3
3	Table S3. Calculated ADME parameters (M1-M15)	4
4	Spectroscopic data of M1-M15	5-12
5	Physical Data: MASS, ¹ H-NMR, ¹³ C-NMR spectra of M1-M15	13-34
6	Protein-ligand interaction diagram of M7 and ampicillin	35

Table S1. List of synthesized compounds

Compound	R ₁	R ₂	R ₃	R ₄	R ₅
M1	-H	-H	-CH3	-H	-H
M2	-H	-H	C ₂ H ₅	-H	-H
M3	-H	-H	-OCH ₃	-H	-H
M4	-H	-H	-Br	-H	-H
M5	-H	-H	-Cl	-H	-H
M6	-H	-H	CH ₃	-H	-H
			CH ₃		
M7	-H	-H		-H	-H
M8	-H	-H		-H	-H
M9	-H	-H	-COOH	-H	-H
M10	-H	-COOH	-H	-H	-H
M11	-CH ₃	-H	-H	-H	-H
M12		-H	-H	-H	-H
M13	-OCH ₃	-H	-H	-H	-H
M14	-F	-H	-H	-H	-H
M15	-H	-F	-Н	-H	-H

Compound	IP (-HOMO)	EA (-LUMO)	Ҳ (<i>I</i> P+Е <i>А</i>)/ 2	ή (<i>I</i> Р–Е <i>А</i> /)2	S (1 /2ή)	μ –(IP+EA)/2	ω (μ2 /2η)
M1	0.2091	0.04849	0.128795	0.080305	6.226262	-0.1288	0.103282
M2	0.20827	0.04766	0.127965	0.080305	6.226262	-0.12797	0.101955
M3	0.20508	0.0426	0.12384	0.08124	6.154604	-0.12384	0.094389
M4	0.21955	0.05577	0.13766	0.08189	6.105752	-0.13766	0.115706
M5	0.21066	0.05722	0.13394	0.07672	6.517205	-0.13394	0.116918
M6	0.18287	0.02934	0.106105	0.076765	6.513385	-0.10611	0.073329
M7	0.21133	0.0362	0.123765	0.087565	5.710044	-0.12377	0.087465
M8	0.20563	0.06337	0.1345	0.07113	7.029383	-0.1345	0.127163
M9	0.2133	0.07899	0.146145	0.067155	7.445462	-0.14615	0.159023
M10	0.21256	0.0687	0.14063	0.07193	6.951203	-0.14063	0.137473
M11	0.20803	0.04758	0.127805	0.080225	6.232471	-0.12781	0.101802
M12	0.19774	0.04087	0.119305	0.078435	6.374705	-0.11931	0.090736
M13	0.2022	0.04392	0.12306	0.07914	6.317918	-0.12306	0.095677
M14	0.20696	0.05216	0.12956	0.0774	6.459948	-0.12956	0.108435
M15	0.21853	0.05794	0.138235	0.080295	6.227038	-0.13824	0.118992

Table S2. Calculated electronic properties (M1-M15)

Table S3. Calculated ADME parameters (M1-M15)

Comp.	MW	Donor HB	Accpt HB	QPlogPo/w	QPlogS	% HumanOralAbsorption	PSA	Rule Of Five	Rule Of Three
M1	332.447	3.000	3.000	4.017	-5.839	100.000	63.566	0	1
M2	346.474	3.000	3.000	4.360	-6.202	100.000	63.538	0	1
М3	348.447	3.000	3.750	3.836	-5.566	100.000	71.867	0	0
M4	397.317	3.000	3.000	4.288	-6.149	100.000	63.591	0	1
M5	397.317	3.000	3.000	4.288	-6.149	100.000	63.591	0	1
M6	352.866	3.000	3.000	4.213	-6.036	100.000	63.591	0	1
M7	361.489	3.000	4.000	4.178	-6.220	100.000	67.002	0	1
M8	424.544	3.000	3.750	5.668	-7.730	96.800	71.169	1	1
M9	394.518	3.000	3.000	5.319	-7.259	94.828	63.494	1	1
M10	362.430	4.000	5.000	2.986	-5.166	65.270	113.935	0	1
M11	362.430	4.000	5.000	3.031	-5.013	67.140	113.834	0	1
M12	332.447	3.000	3.000	3.968	-5.536	100.000	63.521	0	0
M13	424.544	3.000	3.750	5.810	-7.561	100.000	68.675	1	1
M14	348.447	3.000	3.750	3.831	-5.366	100.000	70.359	0	0
M15	336.411	3.000	3.000	3.897	-5.478	100.000	63.730	0	0

DonorHB: Estimated number of hydrogen bonds that would be donated by the solute to water molecules in an aqueous solution (recommended value:0-6); Acceptor HB: Estimated number of hydrogen bonds that would be accepted by the solute from water molecules in an aqueous solution (recommended value:2-20); QPlogPo/w: Predicted octanol/water partition coefficient (recommended value:-2-6.5); PSA: Van der Waals surface area of polar nitrogen and oxygen atoms and carbonyl carbon atoms (recommended value:7-200); Rule of Five: Number of violations of Lipinski's rule of five [41]. The rules are: mol MW < 500, QPlogPo/w < 5, donorHB \leq 5, accptHB \leq 10.Compounds that satisfy these rules are considered druglike. (The "five" refers to the limits, RuleOfThree Number of violations of Jorgensen's rule of three. The three rules are: , QPlogS > -5.7, QP PCaco > 22 nm/s, # Primary Metabolites < 7.

1-cyclohexyl-2-(4-methylphenyl)-1*H*-benzimidazole-5-carboxamidine HCI (M1): Yield 35%, Mp: 264-266⁰C. ¹H-NMR δ ppm (DMSO-d₆): 1.20-1.61 (m, 4H, cyclohexyl -CH₂), 1.80-1.89 (m, 4H, cyclohexyl -2CH₂), 2.21-2.30 (m, 2H, cyclohexyl -CH₂), 2.40 (s, 3H, -CH₃), 4.24-4.30 (m, H, cyclohexyl -CH), 7.39 (d, 2H, Jo=7.6 Hz, H-3',5'), 7.53 (d, 2H, Jo= 8.4 Hz, H-2',6'), 7.68 (dd, H, Jo= 8.4 Hz, Jm= 2 Hz, H-6), 8.01 (d, H, Jo=8.4 Hz, H-7), 8.19 (d, H, Jm=1.6 Hz, H-4). ¹³C-NMR δ ppm (DMSO-d₆): 20,91, 24,89, 25,43, 30,38, 56,80, 113.27, 119.24, 121.00, 122.68, 127.14, 129.32, 136.66, 139.79, 142.76, 155.49, 166.04, 176.58. MS (ESI+) *m/z*: 333.4 (M+H, 80%), 251.3 (100%). Anal. Calcd for C₂₁H₂₄N₄.1,5 HCl . 0,5 C₂H₆O; C: 65.89, H: 7.10, N:13.97 Found; C: 65.55, H:7.23, N: 14.01.

1-cyclohexyl-2-(4-ethylphenyl)-1*H*-benzimidazole-5-carboxamidine HCl (M2): Yield 40%, Mp: 300°C. ¹H-NMR δ ppm (DMSO-d₆): 1.24.1.38 (t, 3H, -CH₂-<u>CH₃)</u>, 1.39-1.64 (m, 4H, -2CH₂), 1.85 (d, 2H, -CH₂), 1.94 (d, 2H, -CH₂), 2.26-2.34 (m, 2H, -CH₂), 2.71-2.77 (q, 2H, -<u>CH₂-CH₃)</u>, 4.31- 4.37 (m, H, -CH), 7.47 (d, 2H, Jo=8.0 Hz, H-3',5'), 7.63 (d, 2H, Jo=8.0 Hz, H-2',6'), 7.79 (dd, H, Jo= 8.8 Hz, Jm= 1.6 Hz, H-6), 8.17 (d, H, Jo= 8.8 Hz, H-7), 8.30 (d, H, Jm=1.6 Hz, H-4), 9.26 (s, 2H), 9.48 (s, 2H). ¹³C-NMR δ ppm (DMSO-d₆) : 15.20, 24.16, 25.45, 28.01, 30.35, 57.18, 113.81, 119.46, 121.43, 121.93, 126.47, 128.29, 129.48, 136.86, 141.39, 146.46, 155.48, 165.71. MS (ESI+) *m/z*: 347.5 (M+H, 90%), 265.4 (100%). Anal. Calcd for C₂₂H₂₆N₄.1,25 HCl.0,5 C₂H₆O.0,75 H₂O C:68.22, H:7.45, N: 14.14 Found; C: 68.50, H: 7.51, N:14.40.

1-cyclohexyl-2-(4-methoxyphenyl)-1*H*-benzimidazole-5-carboxamidine HCI (M3): Yield 70%, M.p. 118-120°C. ¹H-NMR δ ppm (DMSO-d₆): 1.22-1.63 (m, 4H, -2CH₂, 1.81-1.89 (t, 4H, -2CH₂), 2.22-2.31 (m, 2H, -CH₂), 3.84 (s, 3H, -OCH₃), 4.23-4.26 (t, H, -CH), 7.12 (d, 2H, Jo=8.8 Hz, H-3',5'), 7.58 (d, 2H, Jo= 8.8 Hz, H-2'-6'), 7.68 (d, H, Jo=8.4 Hz, H-6), 7.87 (d, H, Jo=8.4 Hz, H-7), 8.09 (d, H, Jm=1.2 Hz, H-4) ¹³C-NMR δ ppm (DMSO-d₆) : 24.82, 25.45, 32.95, 57.09, 62,25, 113.69, 120.21, 121.15, 121.81, 123.92, 129.17, 131.49, 131.91, 137.26, 142.69, 154.69, 165.78. MS (ESI+) *m/z*: 349.37 (M+H, 50%), 267.27 (100%). Anal. Calcd for C₂₁H₂₄N₄O.1,25 HCI . 0,25 C₂H₆O. 3 H₂O; C:56.19, H:7.18, N:12.19, Found; C: 56.35, H: 7.01, N:12.50.

1-cyclohexyl-2-(4-bromophenyl)-1*H*-benzimidazole-5-carboxamidine HCI (M4): Yield 48%, M.p. 344-347°C. ¹H-NMR δ ppm (DMSO-d₆): 1.23-1.63 (m, 4H, -2CH₂), 1.84 (d, 2H, -CH₂), 1.93 (d, 2H, -CH₂), 2.24-2.32 (q, 2H, -CH₂), 4.24- 4.30(m, H, -CH), 7.65 (d, 2H, Jo=8.0 Hz, H-3', 5'), 7.77 (dd, H, Jo=8.4 Hz, Jm=1.6 Hz, H-6), 7.82 (d, 2H, Jo= 8.4 Hz, H-2',6'), 8.13 (d, H, Jo=8.8 Hz, H-7), 8.30 (d, H, Jm=1.2 Hz, H-4), 9.34 (br, s, 4H, NH_{amidine}).¹³C-NMR δ ppm (DMSO-d₆) : 24.19, 25.39, 30.44, 57.08, 113.68, 120.20, 121.14, 121.79, 123.90, 129.16, 131.48, 131.90, 137.25, 142.68, 154.68, 165.76. MS (ESI+) *m/z*: 397.29 (M+H, 100%), 399.25 (M+H+2, 95%). Anal. Calcd for C₂₀H₂₁BrN₄ .3 HCl.1,25 H₂O. 0,65 C₂H₆O C: 45.75, H 5.48, N: 10.02, Found; C: 45.53, H: 5.45, N:10.38.

1-cyclohexyl-2-(4-chlorophenyl)-1*H*-benzimidazole-5-carboxamidine HCI (M5): Yield 25%, M.p. 210-212°C. ¹H-NMR δ ppm (DMSO-d₆): 1.26-1.65 (m, 4H, -2CH₂), 1.70 (d, 2H, -CH₂), 1.93 (d, 2H, -CH₂), 2.24-2.37 (m, 2H, -CH₂), 4.23-4.30 (m, H, -CH), 7.64 (d, 2H, Jo=8.4 Hz, H-3',5'), 7.78 (dd, H, Jo=8.4 Hz, Jm=1.6 Hz, H-6), 7.82 (d, 2H, Jo=8.4 Hz, H-2', 6'), 8.13 (d, H, Jo=8.4 Hz, H-7), 8.30 (d, H, Jm=1.2 Hz, H-4), 9.36 (br, s, 4H, NH_{amidine}).¹³C-NMR δ ppm (DMSO-d₆) : 24.21, 25.41, 30.46, 57.09, 113.69, 120.21, 121.15, 121.81, 123.92, 129.17, 131.91, 137.26, 142.26, 142.69, 154.69, 165.78. MS (ESI+) *m/z*: 353.4 (M+H, 95%), 355.4 (%M+H+2, 40%), 271.3 (%100). Anal. Calcd for C₂₂H₂₇N₅. 1,55 HCl.C₂H₆O. 0,25 H₂O. C: 57.45, 4:6.37, N:12.18, Found; C: 57.72, H: 6.15, N: 11.87.

1-cyclohexyl-2-(4-dimethylaminophenyl)-1*H*-benzimidazole-5-carboxamidine HCI (M6): Yield: 17%, M.p. 210-212⁰C. ¹H-NMR δ ppm (DMSO-d₆): 1.14-1.63 (m, 4H, -2CH₂), 1.85 (t, 4H, -2CH₂), 2.24-2.32 (q, 2H, -CH₂), 2.99 (s, 6H, -N(CH₃)₂), 4.37 (t, H, -CH), 6.85 (d, 2H, Jo= 8.4 Hz, H-3',5'), 7.48 (d, 2H, Jo=8.4 Hz, H-2', 6'), 7.67 (d, H, Jo=8.4 Hz, H-6), 8.02 (d, H, Jo=8.8 Hz, H-7), 8.18 (s, H, H-4), 9.20 (br, s, 4H, NH_{amidine}).¹³C-NMR δ ppm (DMSO-d₆) : 24.19, 25.49, 30.35, 56.79, 111.58, 113.16, 116.24, 119.31, 120.64, 120.90, 130.18, 137.38, 142.91, 151.09, 156.55, 165.83. MS (ESI+) m/z: 362.5 (M+H, 40%), 280.4 (100%). Anal. Calcd for C₂₂H₂₇N₅. 3 HCl . 1.5 C₂H₆O C: 55.61, H:7.28, N: 12.97, Found; C:56.05, H:7.33, N:12.80.

1-cyclohexyl-2-(4-benzyloxyphenyl)-1*H*-benzimidazole-5-carboxamidine HCl (M7): Yield 10%, M.p. 192-195^oC. ¹H-NMR δ ppm (DMSO-d₆): 1.1-1.51 (m, 4H, -2CH₂), 1.55-1.8 (m, 4H, -2CH₂), 2.08 (d, 2H, -CH₂), 3.88-3.94 (t, H, -CH), 5.18 (s, 2H, -OCH₂), 7.15 (dd, H, H, Jo=7.2, Jo'=7.6, H-4″), 7.23-7.33 (m, 5H), 7.44 (dd, H, Jo=7.2 Hz Jm=1.6 Hz), 7.58 (m, H), 7.69 (dd, H, Jo=8.4 Hz, Jm=1.6 Hz, Jo=8.4, H-6), 8.00 (d, H, Jo= 8.0 Hz, H-7), 8.24 (d, H, Jm=2 Hz, H-4), 9.08 (br, s, 4H, NH_{amidine}). ¹³C-NMR δ ppm (DMSO-d₆) : 24.73, 26.00, 27.33, 57.06, 70.28, 113.23, 119.85, 120.43, 121.30, 121.37, 121.88, 128.15, 128.45, 128.81, 132.45, 136.80, 137.15, 143.43, 154.18, 156.79, 166.23 MS (ESI+) *m/z*: 425.28 (M+H, 70%), 343.4 (100%). Anal. Calcd for C₂₇H₂₈N₄O. 2HCl . 0,75 H₂O C: 63.47, H: 6.21, N:10.96, Found; C: 63.78, H: 5.89, N: 11.05.

1-cyclohexyl-2-(1,1'-biphenyl-4-yl)-1*H*-benzimidazole-5-carboxamidine HCI (M8): Yield: 15%, M.p. 245°C. ¹H-NMR δ ppm (DMSO-d₆): 1.22-1.64 (m, 4H, -2CH₂), 1.85-1.88 (t, 2H, -CH₂), 1.97 (d, 2H, -CH₂), 2.28-2.37 (q, 2H, -CH₂), 4.36-4.42 (m, H, -CH), 7.44-7.46 (d, H, Jo=8.0, H-6), 7.53 (d, 2H, Jo=7.6, H-3',5'), 7.76-7.81 (m, 5H, H-2'', 3'', 4'', 5'', 6''), 7.92 (d, 2H, Jo=8.4, H-2', 6'), 8.14 (d, H, Jo=8.4, H-7), 8.32 (d, H, Jm=0.8, H-4), 9.08 (br, s, 4H, NH_{amidin}). ¹³C-NMR δ ppm (DMSO-d₆) : 24.22, 25.48, 30.48, 57.06, 113.63, 120.03, 121.26, 121.60, 126.84, 127.03, 128.10, 128.91, 129.10, 130.02, 137.29, 139.03, 141.68, 142.84, 155.43, 165.90 MS (ESI+) *m/z*: 395.6 (M+H, 70%), 313.2 (100%). Anal. Calcd for C₂₆H₂₆N₄. 0,75 HCI. 1,45 C₂H₆O. H₂O C: 70.99, H:6.59, N:12.74, Found; C: 70.80, H: 6.41, N: 12.98.

1-cyclohexyl-2- (4-carboxyphenyl)-1*H*-benzimidazole-5-carboxamidine HCI (M9): Yield: 55%, M.p. 280-282⁰C. ¹H-NMR δ ppm (DMSO-d₆): 1.25-1.65 (m, 4H, -2CH₂), 1.83 (d, 2H, -CH₂), 1.92 (d, 2H, -CH₂), 2.24-2.31 (q, 2H, -CH₂), 4.24- 4.30(m, H, -CH), 7.67 (d, 2H, Jo=8 Hz, H-2',6'), 7.80 (dd, H, Jo=8.4 Hz, Jm=1.6 Hz, H-6), 7.86 (d, 2H, Jo= 8.4 Hz, H-3', 5'), 8.16 (d, H, Jo=8.8 Hz, H-7), 8.35 (d, H, Jm=1.2 Hz, H-4). ¹³C-NMR δ ppm (DMSO-d₆): 24.18, 25.40, 30.48, 57.10, 115.67, 120.90, 121.33, 121.79, 123.98, 129.15, 131.34, 131.87, 137.25, 142.85, 154.71, 165.61, 168.85. MS (ESI+) m/z: 363.24 (M+H). Anal. Calcd for C₂₁H₂₂N₄O₂. 3HCl. C: 69.59, H:6.12, N:15.46, Found; C: 70.01, H: 6.15, N: 14.01.

1-cyclohexyl-2-(3-carboxyphenyl)-1*H*-benzimidazole-5-carboxamidine HCI (M10): Yield: 25%, M.p. 254-256°C. ¹H-NMR δ ppm (DMSO-d₆): 1.21-1.65 (m, 4H, -2CH₂), 1.87 (d, 2H, -CH₂), 1.90 (d, 2H, -CH₂), 2.24-2.34 (m, 2H, -CH₂), 4.24-4.28 (m, H, -CH), 7.51-7.56 (m, 3H, H-4',5', 6'), 7.66-7.71 (m, H, H-2'), 7.75 (dd, H, Jo=8.4 Hz, Jm=2 Hz, H-6), 8.15 (d, H, Jo=8.8 Hz, H-7), 8.28 (d, H, Jm=1.6 Hz, H-4). ¹³C-NMR δ ppm (DMSO-d₆): 24.13, 25.37, 30.85, 57.08, 113.65, 116.60, 119.94, 121.41, 122.47, 125.63, 131.18, 132.14, 136.48, 143.49, 154.55, 161.72, 163.54, 165.08, 168.87. MS (ESI+) m/z: 363.5 (M+H, 70%), 281.4 (100%). Anal. Calcd for C₂₁H₂₂N₄O₂.1,75 HCl. 0,8 H₂O.0,5 C₂H₆O; C: 56.99, H:6.16, N:12,08 Found; C: 57.35, H: 6.01, N: 11.69.

1-cyclohexyl-2-(2-methylphenyl)-1*H*-benzimidazole-5-carboxamidine HCl (M11): Yield: 24%, M.p. 184-186⁰C. ¹H-NMR δ ppm (DMSO-d₆): 1.15-1.39 (m, 4H, -2CH₂), 1.62-1.84 (m, 4H, -2CH₂), 2.19 (2H, -CH₂), 2.51 (s, 3H, -CH₃), 3.84-3.90 (t, H, -CH), 7.13-7.17 (m, H, H-3'), 7.25 (d, H, Jo= 8.4 Hz, H-4'), 7.42 (dd, H, Jo= 7.6 Hz, Jm=1.6 Hz, H-5'), 7.58-7.62 (m, H, H-6'), 7.73 (dd, H, Jo=8.8 Hz, Jm=2 Hz, H-6), 8.01 (d, H, Jo=8.8 Hz, H-7), 8.25 (s, H, H-4). ¹³C-NMR δ ppm (DMSO-d₆): 17.25, 24.31, 25.57, 30.84, 57.05, 113.60, 116.57, 119.80, 121.53, 122.37, 125.60, 131.01, 132.19, 136.84, 142.65, 154.15, 160.71, 163.15, 166.01. MS (ESI+) *m/z*: 333.5 (M+H, 95%), 251.3 (100%). Anal. Calcd for C₂₁H₂₄N₄.HCl . 0,5 C₂H₆O. 0,25 H₂O; C :66.65, H:7.25, N:14.13, Found; C:66.81, H:6.89, N:14.45.

1-cyclohexyl-2-(2-benzyloxyphenyl)-1*H*-benzimidazole-5-carboxamidine HCI (M12): Yield: 20%, M.p. 192-195^oC. ¹H-NMR δ ppm (DMSO-d₆) : 1.17-1.51 (m, 4H, -2CH₂), 1.53-1.85 (m, 4H, -2CH₂), 2.18 (d, 2H, -CH₂), 3.90-3.97 (t, H, -CH), 5.25 (s, 2H, -OCH₂), 7.13-7.17 (m, H), 7.24-7.34 (m, 6H), 7.44 (dd, H, Jo=1.6 Hz, Jm=7.2 Hz), 7.56-7.61 (m, H), 7.69 (dd, H, Jo=8.4 Hz, Jm =1.6 Hz), 8.00 (d, H, Jo= 8.0 Hz), 8.25 (d, H, Jm=2 Hz), 9.08 (br, s, 4H, NH_{amidine}). ¹³C-NMR δ ppm (DMSO-d₆): 24.75, 26.04, 27.08, 57.06, 71.05, 113.65, 120.06, 121.28, 122.40, 124.80, 126.75, 127.04, 128.93, 129.16, 130.02, 132.25, 137.34, 138.03, 141.68, 144.84, 157.43, 165.80. MS (ESI+) *m/z*: 425.28 (M+H, 70%), 335.39 (100%). Anal. Calcd for C₂₇H₂₈N₄O. 1,5 HCl . 0,25 C₂H₆O . 0,5 H₂O;C: 52.65, H:5.70, N:8.93, Found; C: 52.41, H:5.88, N:9.08.

1-cyclohexyl-2-(2-methoxyphenyl)-1*H*-benzimidazole-5-carboxamidine HCI (M13): Yield: 13%, M.p. 198-202°C. ¹H-NMR δ ppm (DMSO-d₆): 1.14-1.39 (m, 4H, -2CH₂), 1.61-1.81 (m, 4H, -2CH₂), 2.18 (2H, -CH₂), 3.80 (s, 3H, -OCH₃), 4.04-4.10 (t, H, -CH), 7.12-7.16 (m, H, H-3'), 7.24 (d, H, Jo= 8.4 Hz, H-5'), 7.44 (dd, H, Jo= 7.6 Hz, Jm=1.6 Hz, H-4'), 7.57-7.63 (m, H, H-6'), 7.71 (dd, H, Jo=8.8 Hz, Jm=2 Hz, H-6), 8.02 (d, H, Jo=8.8 Hz, H-7), 8.30 (s, H, H-4). ¹³C-NMR δ ppm (DMSO-d₆): 24.81, 25.23, 31.86, 57.05, 61.25, 113.68, 116.55, 118.72, 121.35, 121.89, 125.61, 132.01, 132.19, 137.47, 143.15, 154.57, 160.72, 163.51, 165.18. MS (ESI+) *m/z*: 349.2 (M+H, 100%), 267.1 (100%). Anal. Calcd for C₂₁H₂₄N₄O. 3 HCI. C: 55.09, H:5.94, N:12.24, Found; C: 55.18, H:6.05, N:12.60.

1-cyclohexyl-2-(2-fluorophenyl)-1*H*-benzimidazole-5-carboxamidine HCI (M14): Yield: 9%, M.p. 242-244^oC. ¹H-NMR δ ppm (DMSO-d₆): 1.20-1.62 (m, 4H, -2CH₂), 1.81-1.87 (q, 4H, -2CH₂), 2.17-2.25 (m, 2H, -CH₂), 3.98-4.04 (t, H, -CH), 7.43-7.51 (m, 2H, H-3',5'), 7.64-7.74 (m, 2H, H-4', 6'), 7.76 (dd, H, Jo=8.0, Jm=1.6, H-6), 8.13 (d, H,, Jo=8.8, H-7), 8.29 (d, H, Jm=1.2, H-4). ¹³C-NMR δ ppm (DMSO-d₆): 24.85, 25.52, 31.58, 57.08, 112.58, 115.77, 119.88, 122.53, 123.74, 126.87, 132.21, 133.87, 136.83, 142.47, 154.18, 161.58, 163.21, 167.01. MS (ESI+) *m/z*: 337.2 (M+H, 100%), 255.1 (100%). Anal. Calcd for C₂₀H₂₁FN₄.1,25 HCl . 0,5 C₂H₆O C: 62.89, H:5.87, N:14.67 Found; C: 63.05, H:5.87, N:14.67.

1-cyclohexyl-2-(3-fluorophenyl)-1*H*-benzimidazole-5-carboxamidine HCI (M15): Yield 10%, M.p. 224-226⁰C. ¹H-NMR δ ppm (DMSO-d₆): 1.17-1.63 (m, 4H, -2CH₂), 1.84 (d, 2H, -CH₂), 1.95 (d, 2H, -CH₂), 2.22-2.31 (m, 2H, -CH₂), 4.23-4.29 (m, H, -CH), 7.44-7.53 (m, 3H, H-4', 5', 6'), 7.64-7.69 (m, H, H-2'), 7.72 (dd, H, Jo=8.4 Hz, Jm=2 Hz, H-6), 8.09 (d, H, Jo=8.8 Hz, H-7), 8.25 (d, H, Jm=1.6 Hz, H-4). ¹³C-NMR δ ppm (DMSO-d₆): 24.21, 25.44, 30.43, 57.05, 113.60, 116.34, 119.80, 121.53, 122.37, 125.58, 132.01, 132.21, 136.84, 142.65, 154.15, 160.71, 163.15, 166.01. MS (ESI+) *m/z*: 337.5 (M+H, 100%), 255.0 (50%). Anal. Calcd for C₂₀H₂₁FN₄.2,25HCl.C₂H₆O. 0,5 H₂O; C:55.80, H:6.44, N:11.83 Found; C:55.47, H: 6.87, N:12.01.

Figure 1. MASS spectra of M1

Figure 2. ¹H-NMR spectra of M1

Figure 3. ¹³C-NMR spectra of M1

Figure 4. MASS spectra of M2

Figure 5. ¹H-NMR spectra of M2

Figure 6. ¹³C-NMR spectra spectrum of M2

Figure 8. ¹H-NMR spectra of M3

Figure 9. ¹³C-NMR spectra of M3

Figure 10. MASS spectra of M4

Figure 11. ¹H-NMR spectra of M4

Figure 12. ¹³C-NMR spectra of M4

Figure 13. MASS spectra of M5

Figure 14. ¹H-NMR spectra of M5

Figure 15. ¹³C-NMR spectra of M5

Figure 16. MASS spectra of M6

Figure 17. ¹H-NMR spectra of M6

Figure 18. ¹³C-NMR spectra of M6

Figure 19. MASS spectra of M7

Figure 20. ¹H-NMR spectra of M7

Figure 21. ¹³C-NMR spectra of M7

Figure 22. MASS spectra of M8

Figure 23. ¹H-NMR spectra of M8

Figure 24. ¹³C-NMR spectra of M8

Figure 25. MASS spectra of M9

Figure 26. ¹H-NMR spectra of M9

Figure 27. ¹³C-NMR spectra of M9

Figure 28. MASS spectra of M10

Figure 29. ¹H-NMR spectra of M10

Figure 30. ¹³C-NMR spectra of M10

Figure 31. MASS spectra of M11

Figure 32. ¹H-NMR spectra of M11

Figure 33. ¹³C-NMR spectra of M11

Figure 34. MASS spectra of M12

Figure 35. ¹H-NMR spectra of M12

Figure 36. ¹³C-NMR spectra of M12

Figure 38. ¹H-NMR spectra of M13

Figure 39. ¹³C-NMR spectra of M13

Figure 40. MASS spectra of M14

Figure 41. ¹H-NMR spectra of M14

Figure 42. MASS spectra spectrum of M15

Figure 43. ¹H-NMR spectra of M15

Figure 44. ¹³C-NMR spectra of M15

Figure 45. Ampicillin and **M7** interaction diagram on the PBP4 at the active site (PDB: 6MKI) (left) and binding poses of ampicillin (pink) and **M7** (green)