Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Engineering Diformyl Diaryldipyrromethane into a Molecular Keypad

Lock

K. C. Gowri Sreedevi,^{a,b} Ajesh P. Thomas,^{*c,d} B. Adinarayana,^c and A. Srinivasan^{*c}

^aPhotosciences and Photonics National Institute for Interdisciplinary Science and Technology Thiruvananthapuram-Kerala, India.

> ^bCollege of Engineering Trivandrum, Sreekariyam Thiruvananthapuram-Kerala, India

^cSchool of Chemical Sciences National Institute of Science Education and Research (NISER), Khordha-Odisha, India.

> ^dDepartment of Chemistry University of Kerala Kariavattom Campus Thiruvananthapuram-India

Corresponding authors email ID

ajeshpyn@gmail.com

srini@niser.ac.in

1. General Information

Electronic absorption spectra were recorded on a Shimadzu UV-3101 PC NIR scanning spectrophotometer and the emission spectra were measured on a SPEX-Fluorolog F112X spectrofluorimeter. Photoirradiation of **DA**_{KK} was carried out using an Oriel optical bench with thermostatic cell holders and a 200 W high pressure mercury lamp. To prepare mixture of **DA**_{KK} and **DA**_{EE} (*DA*_{KK}/*DA*_{EE}), 2.14 × 10⁻⁵ M solution of **DA**_{KK} in CH₃CN (3 mL) was taken in a 1 cm quartz cuvette and irradiated with 300 nm UV light ($\lambda_{\text{band pass}} = 300 \pm 30$ nm, 0.1 W/cm²) for 40 seconds and further used for sensing studies.

2. Deprotonation Experiments by Using Various Anions

Fig S1. Addition of F ions (1 - 2.2 equiv) to DA_{KK}/DA_{EE} mixture (2.14 × 10⁻⁵ M) in CH₃CN.

Fig S2 (a) Absorption and (b) emission changes of DA_{KK}/DA_{EE} mixture with 0-0.6 equiv of OH ions. (c) Absorption changes with 0.6-1.2 equiv of OH ion addition. (d) Absorption and e) emission changes upon excess addition of OH ions.

Fig. S3. Benesi-Hildebrand plot for DA_{EE}

Fig S4: Absorption and emission changes ($\lambda_{ex} = 375 \text{ nm}$) of $\mathbf{DA}_{KK}/\mathbf{DA}_{EE}$ (2.14 x 10⁻⁵ M) upon addition of 0.5 equiv. of CN (a & b), $H_2PO_4^-$ (c & d), $CH_3CO_2^-$ (e & f) and $C_6H_5CO_2^-$ (g & h) in CH_3CN .

Fig S5. a) Absorption changes of DA_{KK}/DA_{EE} mixture (2.14 × 10⁻⁵ M) and b) emission changes of DA_{EE} upon addition of 10 equiv of various anions in CH₃CN.

3. Metal ion Binding Studies

Scheme S1. Receptor studies of DA_{KK} . (a) Excess F ions; (b) Zn^{2+} ions.

Fig. S6. a) The Job's plot for DA_{EE}^{2-} with Zn^{2+} ions and b) Benesi-Hildebrand plot for DA_{EE}^{2-} . Zn^{2+} system.

Fig. S7. Plot showing the response of DA_{EE}^{2-} in $CH_3CN(2.14 \times 10^{-5} \text{ M})$ with 1 equiv of Zn^{2+} in presence of 10 equiv of other cations 1) Pb^{2+} , 2) Cd^{2+} , 3) Gd^{3+} , 4) Eu^{3+} , 5) Cu^{2+} , 6) Fe^{3+} , 7) Li^+ , 8) Mg^{2+} , 9) Ag^+ , 10) Zn^{2+} , 11) Cr^{3+} , 12) $Cr^{3+}+Cu^{2+}$ (here 10 equiv of Zn^{2+} were added), 13) K^+ , 14) Ni^{2+} , 15) Co^{2+} , 16) Mn^{2+} and 17) Na^+ . The emission intensity was monitored at 444 nm.

Fig S8. Absorption changes of DA_{KK}/DA_{EE} mixture upon direct addition of Zn^{2+} ions in CH_3CN .