Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Electronic Supplementary Information

Structures, magnetic refrigeration and single moleculemagnet behavior of five rhombus-shaped tetranuclear Ln(III)-

based clusters

Wen-Min Wang,^{a,b} Lei Huai,^a Xi-Wen Wang,^a Kai-Jun Jiang,^b Hai-Yun Shen,^b Hong-Ling Gao,^b Ming Fang, ^{*c} Jian-Zhong Cui^{*b}

Experimental Section

Synthesis of 5-amino-8-hydroxylquinoline. The synthesis of 5-amino-8-hydroxyquinoline was optimized compared to the method reported previously in the literature.¹ A mixture of 5-nitryl-8-hydroxylquinoline (50 mmol) and 5 % Pd/C (0.75 g), which was used as catalyst, in a 1.3 % ratio in absolute isopropanol was heated to 65 °C, and then 12 mL of 85 % hydrazine hydrate was dropped into the mixture over 1 h. It was heated to 90 °C and refluxed for 6 h. Finally, the solvent was removed, and dichloromethane was used to wash the grass green solid product (yield: 50.8%). Elemental analysis (%): Calcd for C₉H₈ON₂ (F_w = 160.42): C 67.32, H 5.00, N 17.50. Found: C 67.28, H 4.97, N 17.82. IR (KBr, cm⁻¹): 3345 (s), 1689 (s), 1625 (s), 1489 (s), 1346 (s), 914 (s), 746 (m).

Synthesis of 5-(2-thenylidene)-8-hydroxylquinoline (HL). The synthesis of 5-(2-thenylidene)-8-hydroxylquinoline (HL1) is similar to that of HL, the only di \Box erence being the use of 2-thenaldehyde (10 mmol) instead of 4-methyl benzaldehyde (10 mmol), the detailed outline of the synthesis of the ligand (HL1) is shown as Scheme. S1. Elemental analysis (%) Calcd for C₁₄H₉N₂OS ($F_w = 253$): C, 77.86; H, 5.34; N,

^a Department of Chemistry, Taiyuan Normal University, Jinzhong 030619, China

^b Department of Chemistry, Tianjin University, Tianjin, 300072, China

^c Department of Chemistry, Hebei Normal University of Science & Technology, Qinhuangdao 066004, China

^{*}Corresponding Authors E-mail : <u>cuijianzhong@tju.edu.cn</u>, fangmingchem@163.com.

10.69. Found: C, 77.65; H, 5.62; N, 10.40. IR (cm⁻¹): 3518 (s), 1612 (w), 1502 (s), 1468 (w), 1413 (s), 1280 (m), 1243 (m), 1193 (m), 1048 (w), 788 (m), 700 (m), 566 (w), 498 (w).

Scheme. S1 Detailed outline of the synthesis of the ligand (HL).

. .

.....

Tables S1 Selected bond lengths (Å) and angles (°) for cluster 1^a.

Bond lengths			
Eu(1)-O(5)	2.339(6)	Eu(1)-O(4)	2.355(6)
Eu(1)-O(8)	2.376(5)	Eu(1)–O(1)	2.399(6)
Eu(1)-O(8)#1	2.401(5)	Eu(1)-O(2)#1	2.422(6)
Eu(1)-O(3)#1	2.449(6)	Eu(2)-O(6)	2.335(6)
Eu(2)-O(8)	2.350(5)	Eu(2)-O(7)	2.355(6)
Eu(2)-O(2)	2.413(6)	Eu(2)–O(3)	2.418(6)
Eu(2)-N(3)	2.549(7)	Eu(2)-O(1)	2.441(5)
Eu(2)-N(5)	2.573(7)	Eu(1)-N(1)	2.586(7)
Bond angle			
O(5)-Eu(1)- O(4)	72.6(2)	O(5)-Eu(1)-O(8)	139.3(2)
O(4)-Eu(1)-O(8)	77.8(2)	O(4)-Eu(1)-O(1)	86.7(2)
O(5)-Eu(1)-O(1)	81.0(2)	O(8)-Eu(1)-O(1)	69.79(18)

^aSymmetry transformations used to generate equivalent atoms: #1 -x+1, -y+2, -z

Tables S2 Selected bond lengths (Å) and angles (°) for cluster 2 ^a .			
Bond lengths			
Gd(1)-O(5)	2.335(4)	Gd(2)-O(6)	2.327(5)
Gd(1)-O(4)	2.335(5)	Gd(2)-O(7)	2.343(5)
Gd(1)-O(8)#1	2.339(4)	Gd(2)-O(8)#1	2.363(4)
Gd(1)-O(3)#1	2.408(4)	Gd(2)-O(2)	2.382(4)
Gd(1)-O(1)	2.418(5)	Gd(2)-O(8)	2.392(4)
Gd(1)-O(2)	2.419(4)	Gd(2)-O(3)	2.420(5)

Gd(1)-N(5)#1	2.528(6)	Gd(2)-O(1)#1	2.441(4)
Gd(1)-N(1)	2.558(5)	Gd(2)-N(3)	2.571(5)
Bond angles			
Gd(1)-O(1)-Gd(2)#1	95.16(15)	Gd(1)#1-O(8)-Gd(2)#1	111.78(18)
Gd(2)-O(2)-Gd(1)	108.36(17)	Gd(1)#1-O(8)-Gd(2)	98.59(14)
Gd(1)#1-O(3)-Gd(2)	95.98(15)	Gd(2)#1-O(8)-Gd(2)	108.15(16)
^a Symmetry transformation	ons used to gen	erate equivalent atoms: #1	-x+2, -y+2, -z
Tables S3 Selected bond le	engths (Å) and a	angles (°) for cluster 3^a .	
Bond lengths			
Tb(1)–O(5)	2.317(3)	Tb(1)–O(4)	2.335(3)
Tb(1)–O(8)	2.351(3)	Tb(1)–O(1)	2.375(3)
Tb(1)–O(8)#1	2.367(3)	Tb(1)-O(2)#1	2.401(3)
Tb(1)–N(1)	2.563(4)	Tb(1)–O(3)#1	2.426(3)
Tb(2)–O(6)	2.314(3)	Tb(2)–O(7)	2.330(3)
Tb(2)–O(8)	2.329(3)	Tb(2)–O(3)	2.394(3)
Tb(2)–O(2)	2.385(3)	Tb(2)–O(1)	2.412(3)
Tb(2)–N(3)	2.528(4)	Tb(2)–N(5)	2.549(4)
Bond angles			
Tb(1)–O(1)–Tb(2)	108.20(11)	Tb(2)–O(2)–Tb(1)#1	96.21(10)
Tb(2)–O(3)–Tb(1)#1	95.31(11)	Tb(2)–O(8)–Tb(1)	111.90(11)
Tb(2)–O(8)–Tb(1)#1	98.50(10)	Tb(1)-O(8)-Tb(1)#1	108.58(11)
^a Symmetry transformation	ons used to gen	erate equivalent atoms: #1	-x+1, -y+1, -z
Tables S4 Selected bond le	engths (Å) and a	ungles (°) for cluster 4 ^a .	
Bond lengths			
Dy(1)-O(4)	2.301(2)	Dy(1)-O(5)	2.315(2)
Dy(1)-O(8)	2.330(2)	Dy(1)-O(2)	2.367(2)
Dy(1)-O(1)	2.383(2)	Dy(1)-O(3)	2.401(2)
Dy(1)-N(3)	2.513(3)	Dy(1)-N(1)	2.546(3)
Dy(2)-O(1)#1	2.416(2)	Dy(2)-N(5)	2.548(3)

	-	

2.300(2)

Dy(2)-O(7)

Dy(2)-O(6)

2.324(2)

Dy(2)-O(8)	2.341(2)	Dy(2)-O(8)#1	2.346(2)	
Dy(2)-O(3)	2.365(2)	Dy(2)-O(2)#1	2.393(2)	
Bond angles				
Dy(1)-O(1)-Dy(2)#1	95.01(8)	Dy(1)-O(2)-Dy(2)#1 96.03(
Dy(2)-O(3)-Dy(1)	108.23(9)	Dy(1)-O(8)-Dy(2)	111.49(9)	
Dy(1)-O(8)-Dy(2)#1	98.34(8)	Dy(2)-O(8)-Dy(2)#1	108.81(9)	
^a Symmetry transformati	ons used to gene	erate equivalent atoms: #1	-x+1, -y, -z	
Fables S5 Selected bond let	engths (Å) and a	ngles (°) for cluster 5 ^a .		
Bond lengths	0 ()			
Er(1)-O(4)	2.282(3)	Er(2)-O(7)	2.303(3)	
Er(1)-O(8)	2.288(3)	Er(2)-O(8)	2.308(3)	
Er(1)-O(5)	2.297(3)	Er(2)-O(8)#1	2.330(3)	
Er(1)-O(1)	2.351(3)	Er(2)-O(3)	2.332(3)	
Er(1)-O(2)	2.352(3)	Er(2)-O(2)#1	2.360(3)	
Er(1)-O(3)	2.371(3)	Er(2)-O(1)#1	2.392(3)	
Er(1)-N(3)	2.492(4)	Er(2)-N(5)	2.518(3)	
Er(2)-O(6)	2.285(3)	Er(1)-N(1)	2.517(4)	
Bond angles				
Er(1)-O(1)-Er(2)#1	95.02(10)	Er(1)-O(8)-Er(2)	112.14(10)	
Er(1)-O(2)-Er(2)#1	95.84(9)	Er(1)-O(8)-Er(2)#1	98.47(10)	
Er(2)-O(3)-Er(1)	108.31(11)	Er(2)-O(8)-Er(2)#1	108.63(10)	
^a Symmetry transformati	ons used to gene	erate equivalent atoms: #1	-x+2, -y-1, -z+1	
Fable S6 The Dy ^{III} geometry	ry analysis by S	HAPE 2.0 for cluster 4.		

Cluster 4	D _{4d} SAPR	D_{2d} TDD	C _{2v} JBTPR	$C_{2\nu}$ BTPR	D _{2d} JSD
Dy_1^{3+}	1.075	2.213	2.886	2.119	5.064
Dy2 ³⁺	0.818	2.515	2.043	1.478	4.650

SAPR-8 = Square antiprism; **TDD-8** = Triangular dodecahedron; **JBTPR-8** = Biaugmented trigonal prism J50; **BTPR-8** = Biaugmented trigonal prism; **JSD-8** = Snub diphenoid J84.

Fig. S1 The coordinate atom labels of central Dy(III) ions in cluster 4.

Fig. S2 The four central Dy atoms are bridged by six μ_2 -O and two μ_3 -O atoms forming the Dy₄ core.

Fig. S3 The PXRD patterns for 1-5 and the corresponding simulated one.

Fig. S4 The solid-state luminescence spectrums of clusters 1, 3, and 4 at room temperature.