Electronic Supporting Information

Manuscript ID NJ-ART-04-2020-001982

Palladium (II) complexes of tetradentate donor-acceptor Schiff base ligands: synthesis, spectral, structural, thermal and NLO properties

Salvador Celedón, Thierry Roisnel, Vania Artigas, Mauricio Fuentealba, David Carrillo, Isabelle Ledoux-Rak, Jean-René Hamon and Carolina Manzur

Contents	Page
Fig. S1 Solid-state (KBr pellets) FT-IR spectra of proligand 2 (top), neutral bimetallic complex 3	2
(middle) and ionic trimetallic complex 4 (bottom).	
Fig. S2 ¹ H NMR spectrum of 2 in $(CD_3)_2$ SO at 298 K.	2
Fig. S3 ¹ H NMR spectrum of 3 in $(CD_3)_2$ SO at 298 K.	3
Fig. S4 ¹ H NMR spectrum of 4 in (CD ₃) ₂ SO at 298 K. Inset: expansion of the chemical shift area	3
of the substituted cyclopentadienyl proton.	
Fig. S5 ${}^{13}C{}^{1}H$ NMR spectrum of 2 in (CD ₃) ₂ SO at 298 K.	3
Fig. S6 ${}^{13}C{}^{1}H$ NMR spectrum of 3 in (CD ₃) ₂ SO at 298 K.	4
Fig. S7 ¹³ C{ ¹ H} NMR spectrum of 4 in $(CD_3)_2$ SO at 298 K. Inset: expansion of the chemical shift	4
area of substituted cyclopentadienyl carbons.	
Fig. S8 Packing diagram of the bimetallic complex 4 showing the molecular arrangement within the	5
crystal lattice through intermolecular hydrogen bonds.	
Fig. S9 Cyclic voltammograms of complexes 3 (black curve) and 4 (red curve) recorded in DMF	5
containing 0.1 M <i>n</i> -Bu ₄ N ⁺ PF ₆ ⁻ at $T = 298$ K with a sweep rate $v = 0.1$ V s ⁻¹ , reference electrode	
Ag/AgCl; external reference: ferrocene/ferrocenium couple (blue curve).	
Table S1 Selected bond distances (Å) and angles (°) of the Schiff base ligand in compounds $3 \cdot H_2O$	6
and 4 .	
Table S2 Metrical parameters of the ferrocenyl units in compounds $3 \cdot H_2O$ and 4 .	7
Table S3 Hydrogen bond interactions in $3 \cdot H_2O$ and 4 .	7

Fig. S1 Solid-state (KBr pellets) FT-IR spectra of proligand 2 (top), neutral bimetallic complex 3 (middle) and ionic trimetallic complex 4 (bottom).

Fig. S2 ¹H NMR spectrum of **2** in $(CD_3)_2SO$ at 298 K.

Fig. S3 ¹H NMR spectrum of **3** in $(CD_3)_2SO$ at 298 K.

Fig. S4 ¹H NMR spectrum of **4** in (CD₃)₂SO at 298 K. Inset: expansion of the chemical shift area of the substituted cyclopentadienyl proton.

Fig. S5 ${}^{13}C{}^{1}H$ NMR spectrum of 2 in (CD₃)₂SO at 298 K.

Fig. S6 ${}^{13}C{}^{1}H$ NMR spectrum of 3 in (CD₃)₂SO at 298 K.

Fig. S7 ¹³C{¹H} NMR spectrum of **4** in $(CD_3)_2$ SO at 298 K. Inset: expansion of the chemical shift area of substituted cyclopentadienyl carbons.

Fig. S8 Packing diagram of the bimetallic complex **4** showing the molecular arrangement within the crystal lattice through intermolecular hydrogen bonds.

Fig. S9 Cyclic voltammograms of complexes **3** (black curve) and **4** (red curve) recorded in DMF containing 0.1 M n-Bu₄N⁺PF₆⁻ at T = 298 K with a sweep rate v = 0.1 V s⁻¹, reference electrode Ag/AgCl; external reference: ferrocene/ferrocenium couple (blue curve).

	$3 \cdot \mathbf{H}_2 \mathbf{O}$	4			
Bond distances					
O(1)-C(11)	1.300(4)	1.296(8)			
O(2)-C(28)	1.321(4)	1.298(7)			
O(3)-C(17)	1.371(4)	1.366(9)			
N(1)-C(13)	1.321(4)	1.309(8)			
N(1)-C(20)	1.468(4)	1.484(9)			
N(2)-C(21)	1.473(4)	1.484(9)			
N(2)-C(22)	1.297(4)	1.273(8)			
C(10)-C(11)	1.484(4)	1.476(9)			
C(11)-C(12)	1.387(4)	1.388(9)			
C(12)-C(13)	1.409(4)	1.408(9)			
C(13)-C(14)	1.491(4)	1.502(9)			
C(20)-C(21)	1.521(5)	1.475(11)			
C(22)-C(23)	1.435(5)	1.460(9)			
C(23)-C(28)	1.438(5)	1.436(9)			
C(29)-O(4)	1.240(4)	-			
C(29)-O(5)	1.298(5)	-			
	Angles				
Pd(1)-O(1)-C(11)	122.1(2)	122.4(4)			
Pd(1)-O(2)-C(28)	125.4(2)	123.3(4)			
Pd(1)-N(1)-C(13)	124.6(2)	124.9(5)			
Pd(1)-N(1)-C(20)	112.4(2)	111.7(4)			
Pd(1)-N(2)-C(21)	113.4(2)	113.0(4)			
Pd(1)-N(2)-C(22)	126.3(2)	127.1(5)			
O(1)-C(11)-C(12)	126.5(3)	125.7(6)			
N(1)-C(13)-C(12)	123.5(3)	123.1(6)			
O(2)-C(28)-C(23)	124.3(3)	126.2(6)			
N(2)-C(22)-C(23)	125.9(3)	125.0(6)			
C(11)-C(12)-C(13)	127.6(3)	128.4(6)			
C(22)-C(23)-C(28)	124.7(3)	124.0(6)			
O(4)-C(29)-O(5)	122.9(3)	-			

Table S1 Selected bond distances (Å) and angles (°) of the Schiff base ligand in compounds $3 \cdot H_2O$ and 4.

Table S2 Metrical parameters of the ferrocenyl units in compounds 3 H₂O and 4.

Compd	Fe-Cp _{CNT} (Å)	Fe-Cp' _{CNT} (Å)	Cp _{CNT} -Fe-Cp' _{CNT} (°)	Cp/Cp' (°)
$3 \cdot H_2O$	1.651	1.647	176.3	2.4
4	1.654	1.650	178.1	1.9

Abbreviations: $Cp = C_5H_5$, $Cp' = C_5H_4$, CNT = centroid.

Table S3 Hydrogen bond interactions in 3. H2O and 4.

Compd.	D–H…A	D–Н (Å)	H […] A (Å)	D […] A (Å)	D−H…A (°)
	O3-H3Ow1 ^{#1}	0.80(4)	1.91(4)	2.713(4)	178(5)
3 ·H2O	O5-H5OO4 ^{#2}	0.81(5)	1.79(5)	2.594(2)	172(5)
	Ow1-Hw1O2	0.87(2)	1.81(2)	2.669(3)	170(4)
4	O3-H3O2 ^{#3}	0.82	2.02	2.801(6)	146.6

Symmetry transformations used to generate equivalent atoms: #1 x, y, z; #2 -x, -y, -z; #3 x-1/2, -y-1/2, z-1/2