Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Supporting Information

Diaminomalenonitrile Functionalized Gelators in F⁻/CN⁻ Sensing, Phase-Selective Gelation, Oil Spill Recovery and Dye Removal from Water

Rameez Raza, Atanu Panja and Kumaresh Ghosh*

Department of Chemistry, University of Kalyani, Kalyani-741235, India. Email: ghosh k2003@yahoo.co.in; kumareshchem18@klyuniv.ac.in.

Table S1. Results of gelation test for compounds 1 and 2.

Solvent	1	2 ¹
CH₃OH	1	I
DMF	S	S
CHCl₃	S	S
THF	S	S
DMSO	G (17 mg/mL, 58°C)	PS
CH₃CN	G (12 mg/mL, 56°C)	PS
Toluene	G (10 mg/mL, 74°C)	PG
Benzene	G (12 mg/mL, 66°C)	PG
1,2-dichlorobenzene	G (25 mg/mL, 48°C)	G (42 mg/mL, 44 °C)
DMSO-H ₂ O(1:1,v/v)	G (8 mg/mL, 66°C)	1
DMF-H ₂ O (1:1,v/v)	G (7 mg/mL, 64 °C)	G (10 mg/mL, 58 °C)
CH ₃ CN-H ₂ O (1:1,v/v)	PG	1
Pet ether*	G (15 mg/mL, 58°C)	G (26 mg/mL, 66°C)
Hexane*	G (14 mg/mL, 64°C)	G (27 mg/mL, 68°C)
Cyclohexane*	G (23 mg/mL, 62°C)	G (32 mg/mL, 70°C)
Petrol*	G (14 mg/mL, 58°C)	G (24 mg/mL, 72°C)
Kerosene*	G (16 mg/mL, 70°C)	G (25 mg/mL, 74°C)
Diesel*	G (14 mg/mL, 56°C)	G (24 mg/mL, 72°C)
Pump oil*	G (15 mg/mL, 72°C)	G (26 mg/mL, 76°C)
Silicon oil*	G (13 mg/mL, 68°C)	G (28 mg/mL, 72°C)

S = Solution; G = Gel (mgc, T_{gel}); I = Insoluble; PS = Partially soluble; P = Precipitation, PG = partial gel (thick material that did not stick on the top of the vial upon inversion). Gelation studies were carried out by taking upto 25 mg and 50 mg of compounds **1** and **2**, respectively in 1 ml of different solvents. Gels were primarily characterized by inversion of vial method after ~15 min of sample preparation.

* In these solvents compounds **1** and **2** were either insoluble or partially soluble. Gelation was investigated by adding THF solution of compounds **1** and **2** to these solvents at 1:19 ratio (THF: solvent, v/v) at concentration upto 30 mg/mL. Gels were primarily characterized by inversion of vial method after ~15 min of sample preparation.

Fig. S1. Partial FTIR spectra of **1** in (a) amorphous state and gel states in (b) toluene, (c) DMF-H₂O (1:1, v/v) and (d) Kerosene.

Fig. S2. Partial FTIR spectra of **2** in (a) amorphous state and gel states in (b) DMF-H₂O (1:1, v/v) and (c) 1,2-dichlorobenzene.¹

Fig. S3. SEM images of xerogel of (a) compound 1 and (b) compound 2 in DMF-H₂O (1:1, v/v)

Fig. S4. Rheological studies of the gels of **1**; (a, c and e) amplitude sweep and (b, d and f) frequency sweep experiments. All the gels were prepared at respective mgc and the experiments were carried out at 25 °C. For all the gels, amplitude sweep experiment was carried out at constant frequency of 1Hz and frequency sweep experiment (except for the 1,2-dichlorobenzene gel) was performed at constant 0.1% strain. For the 1,2-dichlorobenzene gel, the frequency sweep experiment was carried out at constant 0.05% strain.

* G'av and G"av values were calculated from frequency sweep data

Fig. S5. Rheological studies of the gels of **2**; (a and c) amplitude sweep and (b and d) frequency sweep experiments. All the gels were prepared at respective mgc and the experiments were carried out at 25 °C. For all the gels, amplitude sweep experiment was carried out at constant frequency of 1Hz and frequency sweep experiment was performed at constant 0.1% strain.

Fig. S6. Thixotropy-loop test via continuous step-strain measurements with the 1,2-dichlorobenzene gel of **2**. The gel was subjected to a sudden increase in strain from 0.05% (where G'>G'') to 30% (where G'<G''). However, when the strain was reversed from high to low strain after a recovery period of 2 min still G'' was higher than G' indicating dominance of sol-type nature. The experiment was carried out at 25 °C and the gel was pepared at 1.5 wt %, (w/v).

Fig. S7. Photograph showing the sol-gel interconversion of the 1,2-dichlorobenzene gel of **2** in the presence of different physical and chemical stimulus.

Fig. S8. Gel-to-sol transformation of 1 in Toluene upon addition of CN⁻ and F⁻ ions.

Fig. S9. Photograph showing the phase changes of **2** (at mgc) in 1,2-dichlorobenzene when the gels were prepared with equiv. amount of different anions (as tetrabutylammonium salts) [from left to right: (a) CN^- , (b) F^- , (c) AcO^- , (d) $H_2PO_4^-$, (e) CI^- , (f) Br^- , (g) I^- , (h) NO_3^- and (i) HSO_4^-].

Fig. S10. Photograph showing the chemical reversibility of the anion induced sols of **2** in 1,2-dichlorobenzene and discrimination of F⁻ and CN⁻ ions.

Fig. S11. Partial ¹H NMR spectra of **1** (a) in absence and in presence of equiv. amount of (b) F⁻ and (c) CN⁻ ions in CDCI₃ containing 5% d_6 -DMSO.

Fig. S12. Partial ¹H NMR spectra of **2** ($c = 5.60 \times 10^{-3}$ M) (a) in absence and in presence of equiv. amount of (b) F⁻ and (c) CN⁻ in CDCl₃.

Fig. S13. Partial FTIR spectra of (a) 1, (b) 1 with CN⁻ and (c) 1 with F⁻.

Fig. S14. Partial FTIR spectra of (a) 2, (b) 2 with CN⁻ and (c) 2 with F⁻.

Fig. S15. Change in absorbance of **2** ($c = 2.50 \times 10^{-5} \text{ M}$) upon addition of 30 equiv. amounts of (a) F⁻, (b) CN⁻ and (c) different anions ($c = 1.0 \times 10^{-3} \text{ M}$) in CH₃CN containing 1% DMF.

Fig. S16. Benesi–Hilderband plot for **1** ($c = 2.5 \times 10^{-5} \text{ M}$) with (a) CN⁻ and (b) F⁻ ($c = 1.0 \times 10^{-3} \text{ M}$) at 390 nm CH₃CN containing 0.5% DMF from UV-vis titration.

Fig. S17. Benesi–Hilderband plot for **2** ($c = 2.5 \times 10^{-5} \text{ M}$) with (a) CN⁻ and (b) F⁻ ($c = 1.0 \times 10^{-3} \text{ M}$) at 366 nm CH₃CN containing 1% DMF from UV-vis titration.

Fig. S18. Detection limit of (a) CN^{-} and (b) F^{-} for compound **1** at 390 nm in CH_3CN containing 0.5% DMF from UV-vis titration.

Fig. S19. Detection limit of (a) CN^{-} and (b) F^{-} for compound **2** at 366 nm in CH_3CN containing 1% DMF from UV-vis titration.

Table S2.	Binding	constants	and	detection	limit	values	for the	anion-ligand	l comple	exes.

Anion-ligand	Binding constant values (M ⁻¹)					
complex	From UV-vis titration					
1 – CN ⁻	$K = 1.3 \times 10^3$					
1 – F ⁻	$K = 6.5 \times 10^2$					
2 – CN ⁻	K = 6.84 x 10 ²					
2 – F ⁻	$K = 3.37 \times 10^2$					

Anion	Detection limit values (M)	
ligand complex	From UV-vis titration	
1 – CN ⁻	1.4 x 10 ⁻⁵	
1 – F [.]	8.6 x 10 ⁻⁵	
2 – CN ⁻	1.19 x 10 ⁻⁵	
2 – F ⁻	9.10 x 10 ⁻⁶	

Fig. S20. Change in fluorescence intensity (λ_{ex} = 390 nm) of **1** (*c* = 2.50 x 10⁻⁵ M) upon addition of 16 equiv. amount different anions (*c* = 1.0 x 10⁻³ M) in CH₃CN containing 0.5% DMF.

Table S3: Reported structures for CN⁻ sensing in gel phase.

Entry	Gelator structure	Detection media	Sensing mechanism	solvent	Detection limit (M)	Interference from other anions	Ref.
1		Gel-to-sol transition	H-bonding and Deprotonation	DMSO	-	F ⁻ and AcO ⁻	2
2	$R = -\frac{1}{6} \left(\begin{array}{c} HO - N \\ H \\ H \end{array} \right) \left(\begin{array}{c} O \\ R \\ H \\ H \\ H \\ H \end{array} \right) \left(\begin{array}{c} O \\ R \\ R \\ H \\ H$	Gel-to-sol transition	H-bonding and Deprotonation	toluene	-	F ⁻ and AcO ⁻	3
3		Gel-to-gel transition	H-bonding and Deprotonation	DMSO:H ₂ O (8:2, v/v)	-	F^- , AcO ⁻ and $H_2PO_4^-$	4
4	Two component gel from citrazinic acid and melamine	Gel-to-sol transition	H-bonding and Deprotonation	Air dried gel	-	S ²⁻	5
5	$(16H_{33}) (16H_{33}) (16H_{33}$	Gel-to-gel transition	Metal Displacement	DMF	1.0 x 10 ⁻⁵ 1.0 x 10 ⁻⁷	-	6

6	$\widehat{\mathbf{A}}$	Gel-to-gel transition	Metal Displacement	EtOH	1.0 x 10 ⁻⁶	-	7
	N. O						
	C ₁₆ H ₃₃ O OC ₁₆ H ₃₃						
7	C ₁₈ H ₃₇ , NH O	Gel-to-gel transition	Metal Displacement	DMSO	1.6 x 10 ⁻⁶	-	8
	ОН						
8		Gel-to-sol transition	Reaction- based	DMF:H ₂ O (2:1, v/v)	1.36 x 10⁻⁵	-	9
9		Gel-to-sol transition	Reaction- based	CH₃CN	9.36 x 10 ⁻⁶	-	10
10	$R = -\frac{5}{5} \left(\begin{array}{c} CN \\ H \\ $	Gel-to-sol transition	Reaction- based	Toluene- CH ₃ OH (1:2, v/v)	4.17 x 10 ⁻⁶ (in CH₃CN)	-	3
11	$R = \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right)^{\frac{1}{2}} \left($	Gel-to-sol transition	H-bonding and Deprotonation	DMSO:H ₂ O (1:1, v/v)	7.96 x 10 ⁻⁵	F-	11
This work		Gel-to-sol transition	H-bonding and Deprotonation	1a) toluene 1b) CH₃CN	1a) - 1b) 1.4 x 10 ⁻⁵	F [.]	-
	$\begin{array}{c} NC \xrightarrow{N \Pi_2} & O \\ NC \xrightarrow{N} & O \\ R \end{array}$			2a) DCB 2b) CH₃CN	2a) - 2b) 1.19 x 10 ⁻⁵		

 Table S4: Reported structures of diaminomalenonitrile-based anion-sensors.

Entry	Gelator structure	Detection media	solvent	Detection limit (M)	Responsi veness	Interference from other anions	Ref
1	H ₂ N N CN	Solution	DMF:H ₂ O (4:1, v/v)	16nM	CN-	F-	12
2	H ₂ N N CN	Solution	DMF	98nM	F-	-	12
3		Solution	DMSO:HEPS buffer (1:4 v/v)	6.25 ×10−6	CN	-	13
4	S H H_2 N H_2 N H_2 N H_2 N H CN N N N N N N N N N	Solution	DMF:H ₂ O (1:1, v/v)	0.16 μM	CN	-	14
This work	$\begin{array}{c c} NC & NH_2 & O \\ NC & N & O \\ NC & NH_2 & 1 \\ NC & N & O \\ NC & O \\ NC & O \\ R \\ R = \frac{3}{4} & H \\ H \\ H \end{array}$	Gel-to-sol transition	1a) toluene 1b) CH₃CN 2a) DCB 2b) CH₃CN	1a) – 1b) 1.4 x 10 ⁻⁵ M 2a) – 2b) 1.19 x 10 ⁻⁵ M	CN-	F-	-

Fig. S21. Phase-selective gelation of **2** from biphasic mixture of water and (a) petroleum ether, (b) hexane, (c) cyclohexane, (d) petrol, (e) diesel, (f) kerosene, (g) Pump oil and (h) silicon oil

Fig. S22. Phase-selective gelation of **1** from toluene/water mixture in presence of (a) NaCl and from different water source (b) tap water and (c) river water.

Fig. S23. Photograph showing the adsorption of (a) Crystal Violet (CV), (b) Malachite Green (MG), (c) Uranine (UR) when toluene gel of **1** (10 mg/mL) was injected to different dye solutions. In all cases, $[dye] = 3.5 \times 10^{-5}$ M.

.

Fig. S24. Photograph showing the adsorption of (a) Crystal Violet (CV), (b) Malachite Green (MG), (c) Uranine (UR) by the toluene gel of **1** (10 mg/mL) *via* heating-cooling method. In all cases, [dye] = 3.5×10^{-5} M.

Fig. S25. Structures of dyes and the bar plot shows the respective adsorption data.

Fig. S26. Partial FTIR spectra of (a) **1** (amorphous) (b) toluene gel of **1**, (c) Crystal Violet and (d) Crystal Violet adsorbed gel.

Fig. S27. Comparison of normalized UV-vis spectra of the toluene gel of 1 before and after adsorption of Crystal Violet (CV).

Entry	Gelator Structure	Dye removed	% of dye removed	Time Taken	Ref.
1.		Rhodamine B (cationic dye)	84	28h	15
		Reactive Blue 4 (neutral dye)	88	30h	
	$R_1 = -CH_2Ph$ $R_2 = -CH_2CH(CH_3)_2$	Direct red 80 (anionic dye)	97	32h	
2.	$R = \frac{1}{2} $	Uranine (anionic dye)	85	24h	16
3.	соон	Rhodamine 6G (cationic dye)	82.4	48h	17
		Crystal violet (cationic dye)	98.2		
	ноос	Methylene Blue (cationic dye)	76.1		
4.	Ag(I)-melamine polymer hydrogel	Rose Bengal (neutral dye)	93	48h	18
5.	$\begin{array}{c} 0 \\ C_{15}H_{31} \\ R^1 \\ CHMeEt \\ CHMeEt \\ CH_2Ph \\ H \end{array} \begin{array}{c} 0 \\ R^1 \\ R^2 \\ R^3 \\ CHMeEt \\ CH_2Ph \\ H \end{array}$	Crystal Violet (cationic dye)	97	24h	19
6.	но он	Methylene Blue (cationic dye) Methyl Violet 2B (cationic dye)	98 97	48h	20
	O ₂ NH	1- Pyrenemethylam ine (neutral dye)	62		
7.		Crystal Violet (cationic dye)	>95	10h	21

Table S5: Reported structures of supramolecular gelators applied in dye adsorption.

8.		Rhodamine 6G (cationic dve)	95	24h	22
		Acriflavine (cationic dye)	92		
	R ₁ =CH ₃ , R ₂ =COOCH ₃ , X=H ₂				
9.	BzO OH BzO OH OPMP $PMP = p-Methoxyphenyl$	Methyl Violet 2b (cationic dye)	100	24h	23
10.	R_1 O	Crystal Violet Rhodamine B (both cationic dye)	>97	24h	24
11.	HS S NH ₂ Ag ⁺ -gel	Acid fuchsin (anionic dye)	95	4h	25
12.	i) Ag ⁺ -gel, ii) Cd ²⁺ -gel, iii) Pb ²⁺ -gel	Methyl orange (anionic dye)	i) 94	4h 24h 5h	26
13.	$R = -\frac{s}{2} \left(\begin{array}{c} H \\ R \\ 0 \\ H \end{array} \right) \left(\begin{array}{c} H \\ H \\ H \end{array} \right) \left(\begin{array}{c} H \\ H \\ H \end{array} \right) \left(\begin{array}{c} H \\ H \\ H \end{array} \right) \left(\begin{array}{c} H \\ H \\ H \end{array} \right) \left(\begin{array}{c} H \\ H \\ H \end{array} \right) \left(\begin{array}{c} H \\ H \\ H \end{array} \right) \left(\begin{array}{c} H \\ H \\ H \end{array} \right) \left(\begin{array}{c} H \\ H \\ H \end{array} \right) \left(\begin{array}{c} H \\ H \\ H \end{array} \right) \left(\begin{array}{c} H \\ H \\ H \end{array} \right) \left(\begin{array}{c} H \\ H \\ H \end{array} \right) \left(\begin{array}{c} H \\ H \\ H \\ H \end{array} \right) \left(\begin{array}{c} H \\ H \\ H \\ H \end{array} \right) \left(\begin{array}{c} H \\ H \\ H \\ H \\ H \\ H \end{array} \right) \left(\begin{array}{c} H \\ H $	Erythrosine B Uranine (both anionic dye)	83 82	2h	11
This work	$R = \frac{1}{1} \left(\begin{array}{c} NH_2 \\ NC \\ NC \\ H \\ H \\ H \end{array} \right) \left(\begin{array}{c} 0 \\ R \\ R \\ R \\ H \\ H \\ H \\ H \\ H \end{array} \right) \left(\begin{array}{c} 0 \\ R \\$	Crystal Violet Malachite Green (both anionic dye)	>97 >90	Within a minute	-

¹H NMR (CDCI₃, 400 MHz)

Mass spectrum of 1.

¹H NMR (CDCI₃, 400 MHz)

¹³C NMR (CDCI₃, 400 MHz)

References

- 1. A. Panja and K. Ghosh, New. J. Chem., 2018, 42, 13718-13725.
- 2. K. Ghosh and C. Pati, *Tetrahedron Lett.*, 2016, **57**, 5469-5474.
- 3. A. Panja and K. Ghosh, *Supramol. Chem.*, 2019, **31**, 239-250.
- A. Ghosh, P. Das, R. Kaushik, K. K. Damodaran and D. A. Jose, RSC Adv., 2016, 6, 83303-83311.
- 5. S. Sarkar, S. Dutta, C. Ray, B. Dutta, J. Chowdhury and T. Pal, *Cryst.Eng.Comm.*, 2015, **17**, 8119-8129.
- Q. Lin, B. Sun, Q. P. Yang, Y. P. Fu, X. Zhu, T. B. Wei and Y. M. Zhang, *Chem. Eur. J.*, 2014, **20**, 11457-11462.
- 7. Q. Lin, T. T. Lu, X. Zhu, B. Sun, Q. P. Yang, T. B. Wei and Y. M. Zhang, *Chem. Commun.*, 2015, **51**, 1635-1638.
- 8. J. Sun, Y. Liu, L. Jin, T. Chen and B.Yin, *Chem. Commun.*, 2016, **52**, 768-771.
- 9. K. Ghosh and S. Panja, Supramol. Chem., 2017, 29, 350-359.
- 10. A. Panja and K. Ghosh, Chemistry Select, 2018, 3, 1809-1814.
- 11. A. Panja, S. Ghosh and K. Ghosh, New. J. Chem., 2019, 43, 10270-10277.
- 12. S. Sarveswari, A. J. Beneto and A. Siva, Sens. Actuators, B., 2017, 245, 428-434.
- 13. M. J. Kim, R. Manivannan, I. J. Kim, and Y. A. Son, *Sens. Actuators, B.*, 2017, **253**, 942–948.
- 14. K. Keshav, P. Torawane, M. K. Kumawat, K. Tayade, S. K. Sahoo, R. Srivastava and A. Kuwar, *Biosens. Bioelectron.*, 2017, **92**, 95–100.
- 15. B. Adhikari, G. Palui and A. Soft Matter, 2009, 5, 3452-3460.
- 16. S. Panja, S. Bhattacharya and K. Ghosh, Langmuir, 2017, 33, 8277-8288.
- 17. P. K. Sukul and S. Malik, RSC Adv., 2013, 3, 1902-1915.
- 18. P. Bairi, B. Roy and A. K. Nandi, *J. Mater. Chem.*, 2011, **21**, 11747-11749.
- 19. T. Kar, S. Debnath, D. Das, A. Shome and P. K. Das, *Langmuir*, 2009, **25**, 8639-8648.
- 20. F. R. Llansola, B. Escuder, J. F. Miravet, D. H. Merino, I. W. Hamley, C. J. Cardin and W. Hayes, *Chem. Commun.*, 2010, **46**, 7960-7962.
- 21. T. Kar, S. Mukherjee and P. K. Das, New J. Chem., 2014, 38, 1158-1167.
- 22. J. Lu, Y.Gao, J.Wua and Y. Ju, RSC Adv., 2013, 3, 23548-23552.
- 23. K. B. Pal and B. Mukhopadhyay, ChemistrySelect, 2017, 2, 967-974.
- 24. X. Zhang, J. Song, W. Ji, N. Xu, N. Gao, X. Zhang and H. Yu, *J. Mater. Chem. A.*, 2015, **3**, 18953-18962.
- 25. Y. Cheng, Q. Feng, M. Yin, X. Ren, J. Wang and Y. H. Zhou, *New J. Chem.*, 2016, **40**, 9125-9131.
- (a) S. Sengupta, A. Goswami and R. Mondal, *New. J. Chem.*, 2014, **38**, 2470-2479; (b) S. Sengupta and R. Mondal, *J. Mater. Chem. A.*, 2014, **2**, 16373-16377.