Supporting Information

for

A reaction-type receptor for the multi-feature detection of Hg²⁺ in water and living cells †

Mei Zhao,‡ Guang-Kui Shao,‡ Yu-Shuang Guo, Yan-Ling Tang, Jian-Biao Liu*, Dian-Shun Guo*

College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Shandong Normal University, Jinan 250014, P. R. China.

Corresponding Authors

* Emails: chdsguo@sdnu.edu.cn (D.-S. G.); jianbiaoliu.thu@gmail.com (J.-B. L)

Contents

- Fig. S1. FT-IR spectrum of FR-R1
- **Fig. S2.** ¹H NMR spectrum of **FR-R1**
- Fig. S3. ¹³C NMR spectrum of FR-R1
- Fig. S4. HR-MS spectrum of FR-R1
- Table S1. Crystallographic and refinement data of FR-R1
- Table S2.
 Selected bond lengths and angles for FR-R1
- Table S3. Hydrogen bond geometry for FR-R1
- Fig. S5. Hirshfeld surfaces of FR-R1 in different orientations
- Fig. S6. Fingerprint plots of FR-R1
- Fig. S7. Fingerprint plots of FR-R1 resolved into the indicated intermolecular contacts
- Fig. S8. Distribution of intermolecular contacts from Hirshfeld surface analysis for FR-R1
- Fig. S9. UV-vis spectrum of FR-R1
- Table S4. UV-vis absorption of FR-R1 at 569 nm in different solvents
- Fig. S10. UV-vis spectra of FR-R1 in H₂O/THF with various ions
- Fig. S11. Color changes of FR-R1 in H₂O/THF with different metal ions under visible light
- Fig. S12. Effects of EDTA on UV-vis spectra of FR-R1 in H_2O/THF with Hg^{2+} or Cu^{2+}
- **Fig. S13.** Fluorescent spectrum of **FR-R1** in H_2O/THF
- **Fig. S14.** Time response of **FR-R1** in H_2O/THF to Hg^{2+}
- Fig. S15. Fluorescent spectra of FR-R1 with Hg^{2+} affected by Cu^{2+} or Cu^{2+} plus EDTA
- Fig. S16. Fluorescent spectra of FR-R1 with Hg^{2+} in the mixture of all interfering metal ions except Cu^{2+} at the same concentration
- **Fig. S17.** Fluorescent spectra of **FR-R1** with Hg^{2+} in the mixture of all interfering metal ions at the same concentration
- Fig. S18. Fluorescent spectra of FR-R1 with Hg^{2+} obtained during the titration of Cu^{2+} (0 to 5.0 equiv.)
- Fig. S19. Fluorescent intensity changes of FR-R1 and $[FR-R1 + Hg^{2+}]$ in various pH values
- **Table S5.** CV data of **FR-R1** in the absence and presence of Hg^{2+}
- **Fig. S20.** CV assays of **FR-R1** in $CH_2Cl_2/MeCN$ with Hg^{2+} (0 to 1.0 equiv.)
- Fig. S21. DPV assays of FR-R1 in H_2O/THF to Cu^{2+} (0 and 1.0 equiv.)
- Fig. S22. DPV assays of FR-R1 in H_2O/THF to Hg^{2+} and Cu^{2+} in the presence of EDTA
- Table S6. Comparison of FR-R1 with selected analogs with different functional groups
- **Fig. S23.** ¹H NMR spectra of **FR-R1** and **FR-RO** in DMSO- d_6
- Table S7. Cartesian coordinates of the structures of FR-R1 and FR-RO
- Fig. S24. The Mulliken charge values in FR-R1 and FR-RO
- Fig. S25. The cytotoxicity of FR-R1 on HeLa cells

Fig. S1. FT-IR spectrum of FR-R1.

Fig. S2. ¹H NMR spectrum of FR-R1 in CDCl₃.

Fig. S3. ¹³C NMR spectrum of FR-R1 in CDCl₃.

Fig. S4. HR-MS of FR-R1.

Formula	$C_{40}H_{40}FeN_5O_3S{\cdot}CHCl_3$		
Mr	846.05		
Temperature	150.00(10) K		
Wavelength	1.54184 Å		
Crystal system	Orthorhombic		
Space group	$Pca2_1$		
	$a = 30.8908(12)$ Å $\alpha = 90.00^{\circ}$		
Unit cell dimensions	$b = 9.6600(3) \text{ Å} \qquad \beta = 90.00^{\circ}$		
	$c = 12.8697(5) \text{ Å} \qquad \gamma = 90.00^{\circ}$		
Volume	3840.4(2) Å ³		
Ζ	4		
Density	1.463 mg/m ³		
Absorption coefficient	5.956 mm ⁻¹		
F(000)	1756		
Crystal size	0.26 x 0.19 x 0.09 mm		
Theta range for data collection	4.47 to 70.95°		
Limiting indices	-32<=h<=37, -11<=k<=8, -9<=l<=15		
Reflections collected / unique	9435 / 4224 [<i>R</i> (int) = 0.040]		
Completeness to theta $= 25.68$	99.8 %		
Absorption correction	Muti-scan		
Max. and min. transmission	1.00000 and 0.43673		
Refinement method	Full-matrix least-squares on F ²		
Data/ restraints /parameters	4918/1/491		
Goodness-of-fit on F^2	1.029		
Final R indices [I>2sigma(I)]	$R_1 = 0.0728, wR_2 = 0.2047$		
R indices (all data)	$R_1 = 0.0864, wR_2 = 0.1875$		
Largest diff. peak and hole	0.787 and -0.867 e. Å ⁻³		

Table S1. Crystallographic and refinement data of FR-R1

C10—C11	1.459(12)	C11—N5	1.385(10)
C11—O3	1.220(11)	C12—N5	1.413(10)
C12—N1	1.356(10)	C13—C14	1.488(11)
C12—S1	1.638(8)	C13—O4	1.230(9)
C13—N2	1.354(10)	C14—C19	1.386(11)
C14—C15	1.371(12)	C15—C16	1.379(12)
C16—C17	1.399(12)	C17—C18	1.386(12)
C18—C19	1.384(11)	C20—C21	1.497(10)
C19—C20	1.521(11)	C20—N2	1.525(8)
C20—C32	1.503(10)	C21—C26	1.401(10)
C21—C22	1.386(10)	C22—O1	1.387(8)
C22—C23	1.382(10)	C23—C24	1.392(10)
C24—C25	1.409(10)	C24—N3	1.376(10)
C25—C26	1.383(11)	C27—N3	1.457(10)
C29—N3	1.443(10)	C31—C32	1.380(11)
C31—O1	1.378(9)	C31—C36	1.401(10)
C32—C33	1.396(11)	C33—C34	1.357(12)
C34—C35	1.405(12)	C35—C36	1.387(11)
C35—N4	1.362(10)	C39—N4	1.468(11)
C37—N4	1.425(14)	N1—N2	1.377(9)
C9—C10—C11	130.9(7)	O3—C11—N5	122.1(8)
C11—C10—C6	121.5(8)	N1—C12—N5	112.5(7)
O3—C11—C10	121.4(8)	N5—C12—S1	120.8(6)
N5-C11-C10	116.4(7)	O4—C13—C14	127.5(8)
N1—C12—S1	126.7(6)	C15—C14—C13	129.4(8)
N2-C13-C14	106.2(6)	C19—C14—C13	108.0(7)
O4—C13—N2	126.3(8)	C14—C15—C16	117.7(8)
C15—C14—C19	122.4(8)	C18—C17—C16	121.4(8)

Table S2. Selected bond lengths (Å) and angles (°) for $FR\mathchar`R\mathchar`R\mathchar`I\mathchar`R\mathchar`I\mathchar`R\mathchar`R\mathchar`I\mathchar`R\mathchar`I\mathch$

C15—C16—C17	120.4(8)	C18—C19—C14	120.3(8)
C19—C18—C17	117.5(8)	C19—C20—N2	97.9(6)
C14—C19—C20	112.3(7)	C21—C20—C32	111.5(6)
C18—C19—C20	127.4(7)	C32—C20—C19	110.1(6)
C21—C20—C19	114.0(6)	C22—C21—C20	121.7(6)
C21—C20—N2	112.2(6)	C26—C21—C20	122.7(7)
C32—C20—N2	110.3(6)	C23—C22—C21	123.2(6)
C22—C21—C26	115.4(7)	C21—C22—O1	122.3(6)
C23—C22—O1	114.4(6)	N3—C24—C23	121.0(7)
C22—C23—C24	121.2(7)	C23—C24—C25	116.6(7)
N3—C24—C25	122.4(6)	C25—C26—C21	122.4(7)
C26—C25—C24	121.1(6)	C32—C31—C36	122.3(7)
O1—C31—C32	123.2(6)	O1—C31—C36	114.5(7)
C31—C32—C20	121.3(7)	C31—C32—C33	115.6(7)
C33—C32—C20	123.1(7)	C34—C33—C32	123.4(8)
C33—C34—C35	120.9(8)	C36—C35—C34	116.9(7)
N4—C35—C34	120.8(8)	N4—C35—C36	122.2(8)
C35—C36—C31	120.9(8)	C11—N5—C12	128.5(7)
C12—N1—N2	122.3(6)	C13—N2—N1	119.1(6)
C13—N2—C20	114.6(6)	C24—N3—C27	122.2(7)
N1—N2—C20	118.6(6)	C29—N3—C27	116.7(7)
C24—N3—C29	120.6(6)	C35—N4—C39	120.9(8)
C35—N4—C37	121.5(8)	C31—O1—C22	118.5(6)
C37—N4—C39	117.4(7)		

D−H···A	<i>d</i> (D–H)	<i>d</i> (H···A)	$d(\mathbf{D}\cdots\mathbf{A})$	∠(D–H…A)
N5–H5A····O4 ⁱ	0.86	2.29	3.132(2)	167.7
C9–H9…O4 ⁱ	0.98	2.19	3.111(2)	155.6
C25–H25…O3 ⁱⁱ	0.93	2.66	3.576(9)	170.9
C28–H28A····Cg1 ⁱⁱ	0.96	3.24	3.834(2)	121.6
C37–H37…C29 ⁱⁱⁱ	0.93	2.71	3.591(16)	157.9
C3–H3···· $Cg2^{iv}$	0.98	2.69	3.644(2)	165.3
$C2-H2\cdots Cl1^{v}$	0.98	2.72	3.502(2)	137.4
$C41\text{-}H41\cdots S^{v}$	0.98	2.81	3.653(12)	144.1
C41–Cl2···Cg3 ^v	1.75	3.36	4.654(12)	128.5

Table S3. Hydrogen bond geometry (Å, °) for FR-R1

Symmetry codes: (i) 0.5 - x, y, 0.5 + z; (ii) x, 1 + y, z; (iii) x, -1 + y, z; (iv) 0.5 - x, -1 + y, 0.5 + z; (v) 0.5 - x, -1 + y, -0.5 + z. Cg1 and Cg2 are the centroids of C6–C10 and C14–C19 rings, respectively; Cg3 is the centroid of C21–C22 bond.

Fig. S5. Hirshfeld surfaces of FR-R1 in different orientations.

Fig. S6. Fingerprint plots of FR-R1.

Fig. S7. Fingerprint plots of FR-R1 resolved into the indicated intermolecular contacts.

Fig. S8. Distribution (%) of intermolecular contacts from Hirshfeld surface analysis for FR-R1.

Fig. S9. UV-vis spectrum of FR-R1 (10 μ M) in H₂O/THF (4:1, v/v).

Table S4. UV-vis absorption of FR-R1 (10 μ M) at 569 nm in different solvents

Solvent	THF/H ₂ O (4:1, v/v)	THF	EtOAc	CH ₂ Cl ₂	CHCl ₃	DMSO	DMF
Abs.	0.013	0.011	0.006	0.008	0.009	0.116	0.155

Fig. S10. UV-vis spectra of FR-R1 (10 μ M) in H₂O/THF (4:1, v/v) in the presence of various ions (50 μ M).

Fig. S11. Color changes of FR-R1 (10 μ M) in H₂O/THF (4:1, v/v) with different metal ions (50 μ M) under visible light, where 1-21 are Li⁺, Na⁺, K⁺, Cs⁺, Mg²⁺, Ca²⁺, Sn²⁺, Pb²⁺, Ag⁺, Zn²⁺, Cd²⁺, Hg²⁺, Cu²⁺, Fe²⁺, Fe³⁺, Co²⁺, Ni²⁺, La³⁺, Ce³⁺, Nd⁺, and Eu³⁺, respectively.

Fig. S12. Effects of EDTA (20 μ M) on UV-vis spectra of FR-R1 (10 μ M) in H₂O/THF (4:1, v/v) with Hg²⁺ (10 μ M) or Cu²⁺ (10 μ M).

Fig. S13. Fluorescent spectrum of FR-R1 (5 μ M) in H₂O/THF (4:1, v/v). (λ_{ex} = 565 nm).

Fig. S14. Time response of FR-R1 (5 μ M) in H₂O/THF (4:1, v/v) to Hg²⁺ (10 μ M).

Fig. S15. Fluorescent spectra of **FR-R1** (5 μ M) in H₂O/THF (4:1, v/v) with Hg²⁺ (5 μ M) affected by Cu²⁺ (10 μ M) or Cu²⁺ (10 μ M) plus EDTA (20 μ M). ($\lambda_{ex} = 565$ nm).

Fig. S16. Fluorescent spectra of **FR-R1** (5 μ M) in H₂O/THF (4:1, v/v) with Hg²⁺ in the mixture of all interfering metal ions (except Cu²⁺) at the same concentration of 5 μ M. ($\lambda_{ex} = 565$ nm).

Fig. S17. Effects of EDTA (100 μ M) on fluorescent spectra of **FR-R1** (5 μ M) in H₂O/THF (4:1, v/v) with Hg²⁺ in the mixture of all interfering metal ions at the same concentration of 5 μ M. ($\lambda_{ex} = 565$ nm).

Fig. S18. Fluorescent spectra of **FR-R1** (5 μ M) in H₂O/THF (4:1, v/v) with Hg²⁺ (5 μ M) obtained during the titration of Cu²⁺ (0 to 5.0 equiv.). ($\lambda_{ex} = 565$ nm).

Fig. S19. Fluorescent intensity changes of **FR-R1** and [**FR-R1**+Hg²⁺] in various pH values. pH was adjusted with 0.1 M HCl and 0.1 M NaOH aqueous solutions, $\lambda_{ex} = 565$ nm, $\lambda_{em} = 590$ nm, 5 μ M for each sample in H₂O/THF (4:1, v/v) solution.

Compd.	$E_{\rm pa}/{ m mV}$	$E_{\rm pc}/{ m mV}$	E_{pa} - E_{pc} /mV	$E_{1/2}/\mathrm{mV}$	$I_{ m pa}/I_{ m pc}$
FR-R1	768	661	107	715	1.92
FR-R1 +Hg ²⁺	701	614	87	657	1.07

Table S5. CV data of **FR-R1** in the absence and presence of Hg^{2+a}

^{*a*} Conditions: **FR-R1** (0.5 mM) in CH₂Cl₂/CH₃CN (1:9, v/v) containing 0.1 M *n*-Bu₄NPF₆, Pt disk working electrode, Pt auxiliary electrode, Hg/Hg₂Cl₂ reference electrode, and scan rate at 100 mVs⁻¹.

Fig. S20. CV assays of **FR-R1** (0.5 mM) in $CH_2Cl_2/MeCN$ containing 0.1 M *n*-Bu₄NPF₆ as supporting electrolyte upon the addition of Hg^{2+} ions. Black, green and pink lines refer to **FR-R1**, **FR-R1** + 0.5 equiv. Hg^{2+} and **FR-R1** + 1.0 equiv. Hg^{2+} , respectively.

Fig. S21. DPV assays of **FR-R1** (0.5 mM) in H₂O/THF (1:9, v/v) containing 0.1 M *n*-Bu₄NClO₄ as supporting electrolyte upon the addition of Cu^{2+} 1.0 equiv.

Fig. S22. DPV assays of **FR-R1** (0.5 mM) in H_2O/THF to Hg^{2+} (0.5 mM) and Cu^{2+} (0.5 mM) in the presence of EDTA (1.0 mM) with 0.1 M *n*-Bu₄NClO₄ as supporting electrolyte.

Probe	Analysis medium	Detection limit	Ref.
N N N N N N N N N N N N N N N N N N N	$MeCN/H_2O = 1:1$	9.97×10 ⁻⁷ M (0.2 ppm)	S1
N C C C C C C C C C C C C C C C C C C C	DMF/HEPES = 2:3	1.71×10 ⁻⁹ M	S2
	MeOH/H ₂ O = 2:1	3×10 ⁻⁸ M	S3
N N N N N N N N N N	EtOH/H ₂ O = 1:1	3.2×10 ⁻⁹ M	S4
	MeCN/HEPES = 0.6:100	6.9×10 ⁻⁹ M	S5
	$MeCOMe/H_2O = 2:3$	5×10 ⁻⁸ M	S6

 Table S6. Comparison of FR-R1 with some analogs with different functional groups

NH NH NH NH NH NH NH	MeOH/H ₂ O = 1:2	1.68×10 ⁻⁷ M	S7
Si-O Si-O Si-O Si+C	Tris-HCl (0.01 M)/MeCN = 1:1	5.4×10 ⁻⁹ M	S8
	MeOH/H ₂ O = 1:4	9.97×10 ⁻⁹ M (2 ppb)	S9
	MeCN/HEPES = 1:1	4.87×10 ⁻⁷ M	S10
N N N N N N N N N N N N N N N N N N N	THF/H ₂ O = 1:9	1.60×10 ⁻⁸ M	Our work

Fig. S23. ¹H NMR spectra of FR-R1 and FR-RO in DMSO- d_6 .

FR-R1			
С	5.02422002	-0.40393880	1.36476044
Н	3.97319432	-0.37933464	1.62638336
С	5.85515073	0.72657393	1.10106710
Н	5.53969346	1.76062397	1.11591903
С	7.16213942	0.25124883	0.77384828
Н	8.01101577	0.86177607	0.49723887
С	7.13835613	-1.17508556	0.83038170
Н	7.96596204	-1.83381840	0.60510799
С	5.81716469	-1.57824124	1.19418779
Н	5.46768657	-2.59608062	1.29998107
С	5.09510880	0.64941679	-2.17879984
Н	4.82784067	1.69324784	-2.10872660
С	6.36443869	0.10450520	-2.50764456
Н	7.25771460	0.67033538	-2.73351837
С	6.27366410	-1.31993273	-2.43964304
Н	7.08296117	-2.01726538	-2.60646453
С	4.94633851	-1.66543324	-2.06203456
Н	4.58948439	-2.67416413	-1.90253776
С	4.20166069	-0.44062461	-1.90598032
С	2.84091583	-0.23518747	-1.37696363
С	1.05556369	-1.57588440	-0.22669293
С	0.34106204	-0.30050415	2.53235712
С	-0.74545347	0.01062101	3.49308464
С	-0.68091593	0.08511620	4.88279954
Н	0.25410151	-0.11566166	5.39643766
С	-1.84623732	0.41892072	5.57292658
Н	-1.83588927	0.48345684	6.65698327
С	-3.03692304	0.67142605	4.87514022
Н	-3.93501717	0.92921007	5.42951198
С	-3.08940225	0.59741577	3.48018892
Н	-4.01421016	0.79388630	2.94620309
С	-1.92569736	0.26439914	2.79374522
С	-1.71229893	0.13831252	1.28282663
С	-2.64786081	-0.86512987	0.63837424
С	-3.38146622	-0.56511744	-0.51058119
С	-4.22992644	-1.48816413	-1.12273776

Table S7. Cartesian coordinates (Å) of the structures of $FR\mathchar`R\mathchar\mathchar`R\mar`R\mathchar\mathchar`R\mathchar`R\mar`R\mathcha$

Н	-4.74418454	-1.15853484	-2.01505337
С	-4.39135229	-2.78258549	-0.59340309
С	-3.63845385	-3.09885435	0.56879853
Н	-3.69187556	-4.08399074	1.01225589
С	-2.80270267	-2.16198939	1.15018038
Н	-2.22695235	-2.44791245	2.02425520
С	-5.36335493	-5.06259946	-0.65216305
Н	-6.32413491	-5.46430634	-0.99047211
Н	-5.42343200	-5.02767562	0.44185611
С	-4.23373629	-6.01091829	-1.08168506
Н	-3.25548691	-5.62529127	-0.78192180
Н	-4.22298152	-6.14588611	-2.16728631
Н	-4.36933278	-6.99513844	-0.61933420
С	-6.00048021	-3.36910657	-2.38232138
Н	-6.39861222	-2.35188094	-2.28937860
Н	-6.87375110	-4.02880033	-2.42125715
С	-5.20497854	-3.49947035	-3.69027343
Н	-4.89521781	-4.53436941	-3.86315885
Н	-4.30492967	-2.87888616	-3.67085542
Н	-5.81965357	-3.18388769	-4.54087309
С	-2.57736964	1.66052385	-0.57814155
С	-1.81003937	1.48421811	0.57640045
С	-1.10796753	2.61171340	1.02948056
Н	-0.50398063	2.52661929	1.92870958
С	-1.15542624	3.83511383	0.38236714
Н	-0.58975316	4.65869499	0.79686311
С	-1.92644560	4.00299884	-0.79908090
С	-2.64864299	2.88196813	-1.24990912
Н	-3.28290297	2.91657912	-2.12510000
С	-2.75564406	5.36344304	-2.69477765
Н	-2.63229375	4.46961357	-3.31689944
С	-4.24965604	5.63457129	-2.46006746
Н	-4.40166418	6.58114270	-1.93278675
Н	-4.70810176	4.84065568	-1.86403700
Н	-4.77958012	5.69181578	-3.41739831
С	-1.26776947	6.38763179	-0.95945220
Н	-1.11835478	7.07445544	-1.79859357
Н	-0.26309420	6.10124741	-0.62699339
С	-2.00386768	7.12005046	0.17241387

Н	-2.18606957	6.45600736	1.02189787
Н	-2.97060467	7.50231472	-0.16834047
Н	-1.40795702	7.96918198	0.52520364
Fe	5.77969704	-0.49029534	-0.58284197
Ν	0.45603588	-0.41215761	0.14186495
Н	0.90605722	0.44882691	-0.18890774
Ν	-0.28836806	-0.34426132	1.29248882
Ν	-5.26113193	-3.69967541	-1.16796582
Ν	-1.95457796	5.20972358	-1.48376177
0	-3.33241694	0.66057791	-1.13179604
0	2.38341245	0.88881802	-1.16308277
0	1.53166111	-0.47355340	2.73761887
Ν	2.12489388	-1.39878293	-1.11205233
Н	2.55171492	-2.28181898	-1.35432743
S	0.65712168	-3.12160502	0.25179622
Н	-2.32297867	6.18917932	-3.26923093

FR-RO

С	-6.24539133	-1.78346513	-0.85083267
Η	-6.54040971	-2.35506356	0.01810127
С	-7.12522396	-1.20100703	-1.81237343
Н	-8.20515715	-1.25043444	-1.79645462
С	-6.33381775	-0.50338867	-2.77270750
Н	-6.70878052	0.06517256	-3.61239380
С	-4.96172588	-0.65365882	-2.40700270
Н	-4.11617375	-0.23378969	-2.93478061
С	-4.90878048	-1.44634905	-1.21948460
Н	-4.01501071	-1.72343310	-0.67673279
С	-6.49047490	1.01474355	1.02014573
Н	-6.73214417	0.39999167	1.87475035
С	-7.39364351	1.55647259	0.07010214
Н	-8.46506567	1.41348789	0.06363057
С	-6.64366611	2.28185559	-0.90577223
Н	-7.04955045	2.79264879	-1.76767472
С	-5.26546753	2.18730289	-0.57304875
Н	-4.45827251	2.65929558	-1.11710752

С	-5.16247515	1.40334078	0.63513617
С	-3.96337852	0.97191357	1.35642462
С	-1.50952692	0.85258075	1.06692585
С	0.06338431	0.57171678	2.48102110
С	1.06489302	0.35721847	3.48938378
С	1.03544765	0.42507508	4.88273200
Н	0.12330886	0.67465671	5.41408917
С	2.22381831	0.15744314	5.56183006
Н	2.24331480	0.19822742	6.64568852
С	3.39237167	-0.16295163	4.85768668
Н	4.30498227	-0.36669845	5.40898673
С	3.41087159	-0.22716883	3.45810500
Н	4.32190492	-0.47648991	2.92426047
С	2.23800444	0.03309589	2.76622177
С	2.04158687	0.01298921	1.23668982
С	2.82370222	1.05741292	0.49641024
С	3.31978345	0.80087149	-0.78888005
С	3.99316455	1.76408359	-1.53262050
Н	4.34027164	1.46772357	-2.51241378
С	4.21684473	3.05926891	-1.01512953
С	3.69952744	3.32822859	0.28689540
Н	3.82047077	4.30403595	0.73645867
С	3.03562904	2.35243144	1.00306562
Н	2.66638503	2.60131510	1.99419432
С	5.14317473	5.35015016	-1.17679292
Н	6.02832853	5.75501060	-1.67548076
Н	5.41145550	5.26662813	-0.11809393
С	3.96820176	6.32108172	-1.35224539
Н	3.05871658	5.94034366	-0.87853898
Н	3.75020801	6.49073753	-2.41036216
Н	4.20928382	7.28787569	-0.89820149
С	5.41617571	3.72541606	-3.07217597
Н	5.86500083	2.72581499	-3.08515478
Н	6.23603939	4.42277416	-3.26515213
С	4.36539211	3.84929893	-4.18353079
Н	3.97866659	4.87011542	-4.24960546
Н	3.51870724	3.17861869	-4.01229591
Н	4.81109803	3.59367192	-5.15039618
С	2.70511217	-1.48071952	-0.68330173

С	2.18356829	-1.34331257	0.61038110
С	1.75266964	-2.52453061	1.24095211
Н	1.35304528	-2.47238844	2.24996405
С	1.82580354	-3.75975641	0.62868186
Н	1.49030455	-4.62751350	1.17955912
С	2.33660410	-3.89336804	-0.69663807
С	2.79239013	-2.71236608	-1.32347708
Н	3.23638844	-2.71835358	-2.30894619
С	2.90882598	-5.23226008	-2.69477818
Н	2.53729394	-4.39390730	-3.29416854
С	4.43855085	-5.31363201	-2.78628594
Н	4.81884171	-6.20578680	-2.28106844
Н	4.91536183	-4.44076769	-2.33152840
Н	4.74875502	-5.36300906	-3.83519934
С	1.96752702	-6.34082966	-0.64662438
Н	1.72799317	-7.07508188	-1.42066020
Н	1.02943224	-6.15659126	-0.11111398
С	3.01696775	-6.92646753	0.30732298
Н	3.29740426	-6.20985305	1.08447930
Н	3.92520842	-7.21073070	-0.23096330
Н	2.62021159	-7.82180162	0.79706450
Fe	-6.01361963	0.28480750	-0.87562550
Ν	-0.46397220	0.56654533	0.33109986
Ν	0.51970155	0.41300347	1.26722186
Ν	4.92025516	4.00694886	-1.72125374
Ν	2.37609238	-5.11130089	-1.33404360
Ο	3.18625473	-0.41746274	-1.40074642
Ο	-3.93741609	0.48034338	2.46471327
0	-1.23885263	0.86905613	2.42621768
Ν	-2.74400229	1.18150624	0.62390529
Н	-2.80641199	1.29516104	-0.38064777
Н	2.46776743	-6.13158583	-3.13428176

FR-R1

FR-RO

Fig. S24. The Mulliken charge values in FR-R1 and FR-RO.

Fig. S25. The cytotoxicity of FR-R1 on HeLa cells. The data are given as mean \pm SD (n = 6).

References:

- S1. Y. Tao, L. Duan, Q. Li, T. Xu and H. Zhang, Sensor Lett., 2014, 12, 1776–1780.
- S2. W.-Y. Liu, S.-L. Shen, H.-Y. Li, J.-Y. Miao and B.-X. Zhao, Anal. Chim. Acta, 2013, 791, 65–71.
- S3. Y. Liu, X. Lv, Y. Zhao, M. Chen, J. Liu, P. Wang and W. Guo, *Dyes Pigments*, 2012, 92, 909–915.
- S4. M. Wang, J. Wen, Z. Qin and H. Wang, Dyes Pigments, 2015, 120, 208-212.
- Z. Chen, J. Chen, D. Pan, H. Li, Y. Yao, Z. Lyu, L. Yang and L.-J. Ma, *Anal. Bioanal. Chem.*, 2017, 409, 2429–2435.
- S6. G.-Q. Shang, X. Gao, M.-X. Chen, H. Zheng and J.-G. Xu, J. Fluoresc., 2008, 18, 1187–1192.
- S7. C. Wang, D. Zhang, X. Huang, P. Ding, Z. Wang, Y. Zhao and Y. Ye, *Sensor: Actuat. B-Chem.*, 2014, 198, 33–40.
- N. R. Chereddy, P. Nagaraju, M.V. N. Raju, K. Saranraj, S. Thennarasu and V. J. Rao, *Dyes Pigments*, 2015, 112, 201–209.
- S9. Y.-K. Yang, K.-J. Yook, and J. Tae, J. Am. Chem. Soc., 2005, 127, 16760–16761.
- S10. J. F. Zhang, C. S. Lim, B. R. Cho and J. S. Kim, *Talanta*, 2010, 83, 658–662.