Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Novel copper(II) complexes with fenamates and isonicotinamide: structure and properties, interaction with DNA and serum albumin

Flóra Jozefíková,^{a,b} Spyros Perontsis,^b Miriama Šimunková,^c Zuzana Barbieriková,^c Ľubomír Švorc, ^dMarian Valko,^c George Psomas,^{b,*} Ján Moncol',^{a,*}

^a Department of Inorganic Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37, Bratislava, SLOVAKIA

^b Department of General and Inorganic Chemistry, Faculty of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, GREECE

^c Department of Physical Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37, Bratislava, SLOVAKIA

^d Department of Analytical Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37, Bratislava, SLOVAKIA

Supplementary material

Albumin binding studies

The extent of the inner-filter effect can be roughly estimated with the following equation:

$$I_{corr} = I_{meas} \times 10^{\frac{\varepsilon(\lambda_{exc})cd}{2}} \times 10^{\frac{\varepsilon(\lambda_{em})cd}{2}}$$
(eq. S1)

where I_{corr} = corrected intensity, I_{meas} = the measured intensity, c = the concentration of the quencher, d = the cuvette (1 cm), $\varepsilon_{(\lambda exc)}$ and $\varepsilon_{(\lambda em)}$ = the ε of the quencher at the excitation and the emission wavelength, respectively, as calculated from the UV-vis spectra of the complexes ¹.

The Stern-Volmer and Scatchard equations and graphs have been used in order to study the interaction of a quencher with serum albumins. The Stern-Volmer constant, K_{SV} (in M⁻¹), and the quenching constant, k_q (in M⁻¹s⁻¹),may be derived from the Stern-Volmer equation ²:

$$\frac{Io}{I} = 1 + k_q \tau_0[Q] = 1 + K_{SV}[Q]$$
(eq. S2)

where Io = the initial tryptophan fluorescence intensity of SA, I = the tryptophan fluorescence intensity of SA after the addition of the quencher, k_q = the quenching rate constant, K_{SV} = the Stern-Volmer constant, τ_o = the average fluorescence lifetime of SA (= 10⁻⁸ s), [Q] = the concentration of

^{*}Corresponding authors' e-mails:

⁽G. Psomas) gepsomas@chem.auth.gr

⁽J. Moncol) jan.moncol@stuba.sk

the quencher, respectively, K_{SV} (in M⁻¹) can be obtained by the slope of the diagram \overline{I} versus [Q], and subsequently k_q (in M⁻¹ s⁻¹) may be calculated from equation [2]:

$$K_{SV} = k_q \tau_o$$
 (eq. S3)

From the Scatchard equation [2]:

$$\frac{\Delta I/Io}{[Q]} = nK - K\frac{\Delta I}{Io}$$
 (eq. S4)

 $\Delta I/Io$

Io

the SA-binding constant K (in M⁻¹) may be calculated from the slope in the Scatchard plots $\boxed{[Q]}_{\Delta I}$

versus \overline{Io} and the number of binding sites per albumin (n) is given by the ratio of y intercept to the slope ².

DNA binding studies

The DNA-binding constant (K_b, in M⁻¹) can be obtained by monitoring the changes in the absorbance at the corresponding λ_{max} with increasing concentrations of CT DNA and it is given by the ratio of slope to the y intercept in plots [DNA]/(ϵ_A - ϵ_f) versus [DNA], according to the Wolfe-Shimer equation ³:

$$\frac{[DNA]}{(\varepsilon_A - \varepsilon_f)} = \frac{[DNA]}{(\varepsilon_b - \varepsilon_f)} + \frac{1}{K_b(\varepsilon_A - \varepsilon_f)}$$
 (eq. S5)

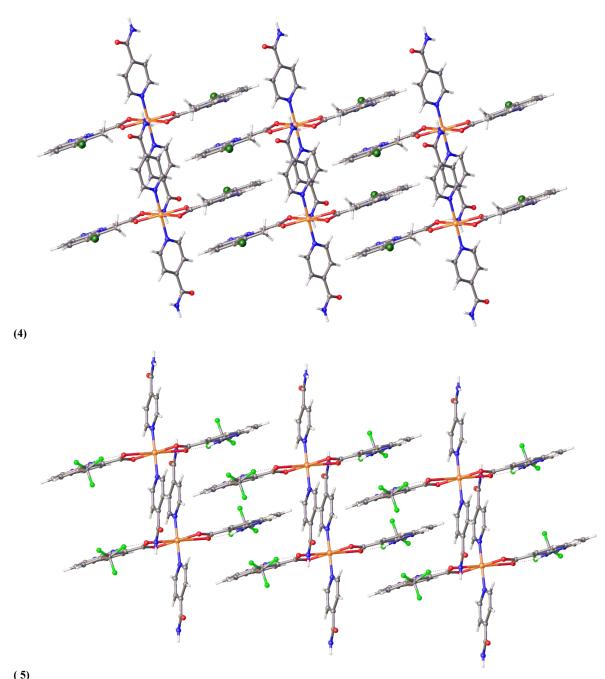
where [DNA] is the concentration of DNA in base pairs, ε_f is the extinction coefficient for the free complex at the corresponding λ_{max} , $\varepsilon_A = A_{obsd}$ /[compound] and ε_b is the extinction coefficient for the complex in the fully bound form.

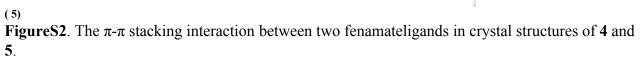
The linear Stern-Volmerequation (eq. S2) has been used in order to study the quenching of EB bound to DNA by the compounds, where I_0 and I are the emission intensities of EB-DNA conjugate in theabsence and the presence of the quencher, respectively, [Q] is the concentration of the quencher (i.e. compounds)². The values of the Stern-Volmer constant K_{SV} (M⁻¹) are obtained by I_0

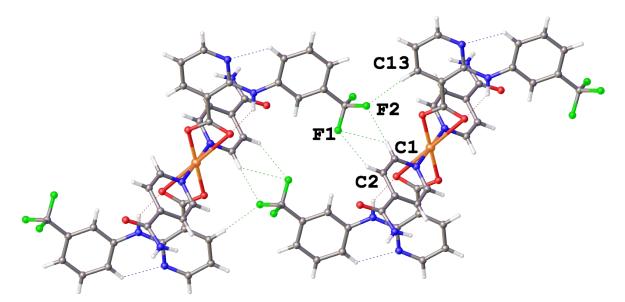
the slope of the diagram \overline{I} versus [Q]. Taking $\tau_0 = 23$ ns as the fluorescence lifetime of the EB-DNA system ⁴, the quenching constants k_q (in M⁻¹s⁻¹) of the compounds can be determined according to eq. S3.

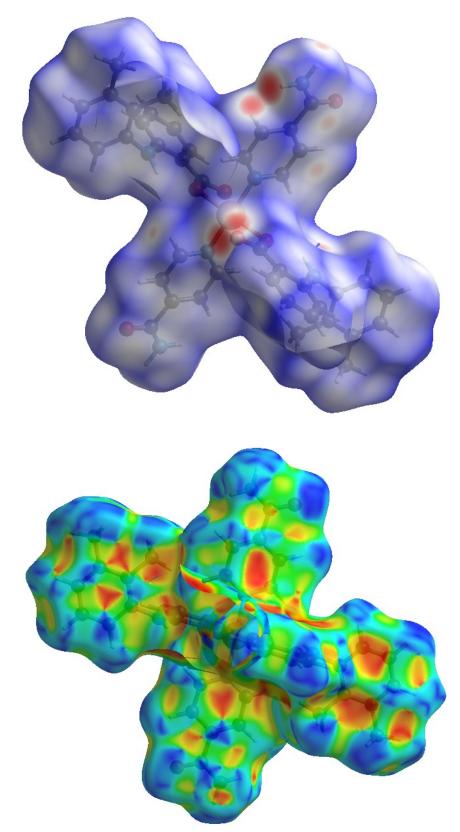
References

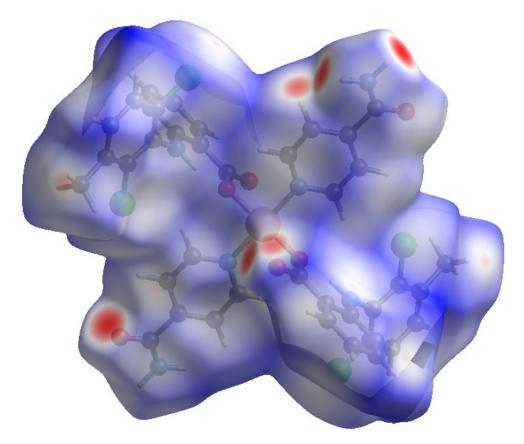
- 1 L. Stella, A.L. Capodilupo, M. Bietti, Chem. Commun., 2008, **39**, 4744-4746.
- J.R. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd Edn, Plenum Press, New York, 2006.
- 3 A. Wolfe, G. Shimer, T. Meehan., Biochemistry, 1987, **6**, 6392-6396.

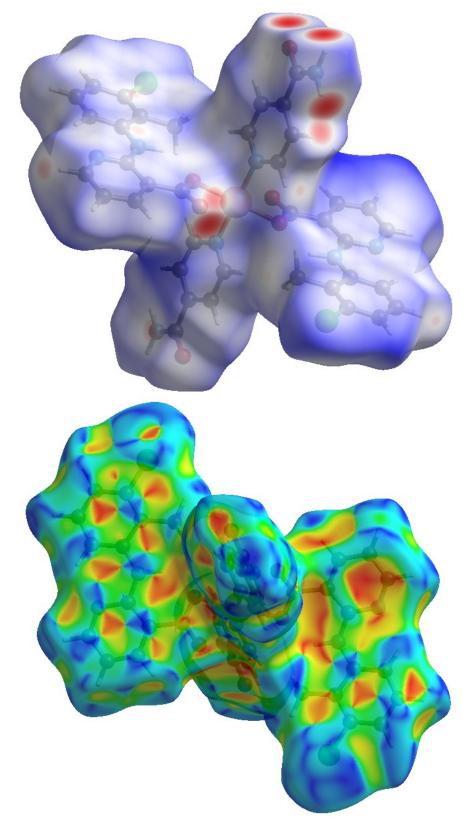

4 D.P. Heller, C.L. Greenstock, Biophys. Chem., 1994, **50**, 305-312.

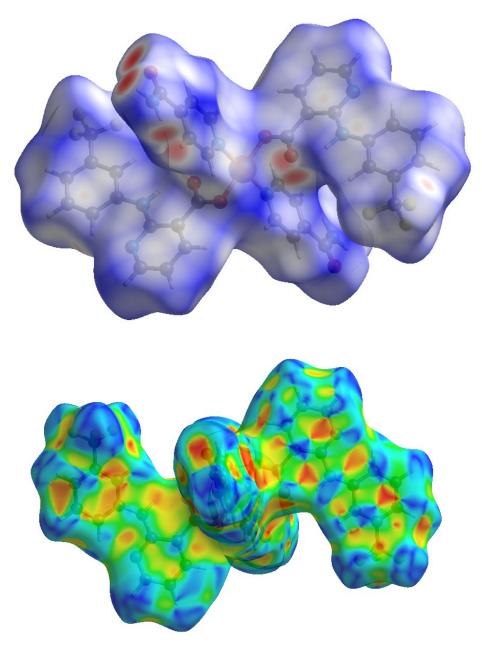

Table S1. Hydrogen bonds for compounds 1-5.					
D–H…O	d(D–H)/Å	d(HA)/Å	d(DA)/Å	D–H…A/°	Symmetry
1					
N2-H2B…O2	0.86	2.13	2.948(3)	160	+x, -1+y, +z
N3-H3…O1	0.86	2.02	2.656(2)	130	+x, -1+y, +z
C4–H4…O2	0.93	2.35	3.224(3)	156	+x, -1+y, +z
2					
N2–H2A…O3	0.86	2.17	3.020(3)	170	1/2- <i>x</i> , -1/2+ <i>y</i> ,1/2- <i>z</i>
N2–H2B…O2	0.86	2.17	3.015(3)	167	1– <i>x</i> , – <i>y</i> , 1– <i>z</i>
N3-H3…O1	0.86	1.91	2.590(3)	135	
С4–Н4…О2	0.93	2.40	3.262(3)	155	1– <i>x</i> , – <i>y</i> , 1– <i>z</i>
3					
N2–H2B…O2	0.86	2.11	2.934(2)	160	-x, -y, 1-z
N3–H3…O1	0.86	2.02	2.659(2)	129	
С4–Н4…О2	0.93	2.35	3.255(2)	156	-x, -y, 1-z
4					
N2–H2A…O3	0.88	2.05	2.884(3)	158	-x, -y, -z
N2–H2B…O2	0.88	2.04	2.893(3)	164	1– <i>x</i> , – <i>y</i> , 1– <i>z</i>
N3-H3…O1	0.88	1.99	2.706(2)	137	
С4–Н4…О2	0.95	2.40	3.317(3)	161	1- <i>x</i> , - <i>y</i> , 1- <i>z</i>
C19–H19…N4	0.95	2.23	2.860(3)	123	
5					
N2–H2A…O3	0.88	2.00	2.877(2)	158	- <i>x</i> , 2- <i>y</i> ,- <i>z</i>
N2–H2B…O2	0.88	2.22	3.081(2)	164	1- <i>x</i> , 2- <i>y</i> , 1- <i>z</i>
N3-H3…O2	0.88	1.94	2.679(2)	137	
С4–Н4…О2	0.95	2.34	3.284(2)	171	1- <i>x</i> , 2- <i>y</i> ,1- <i>z</i>
C19–H19…N4	0.95	2.32	2.927(2)	121	
C1–H1…F1	0.95	2.67	3.288(2)	123	+x, +y, -1+z
C1–H1…F2	0.95	2.66	3.340(2)	129	+x, +y, -1+z
C2–H2…F2	0.95	2.69	3.289(2)	122	+x, +y, -1+z
C13–H13…F2	0.95	2.67	3.376(2)	132	+ <i>x</i> , + <i>y</i> ,-1+ <i>z</i>

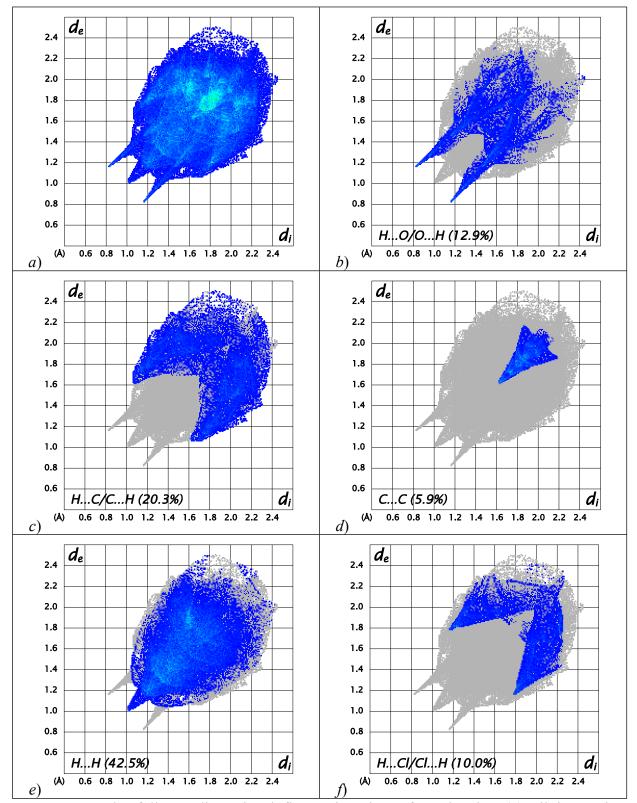

Table S1. Hydrogen bonds for compounds 1-5.

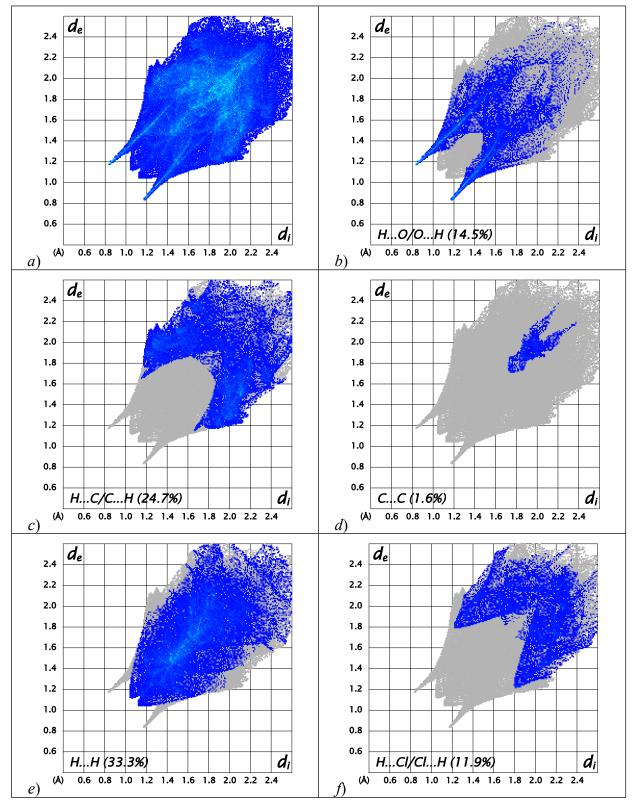

(3) Figure S1. The π - π stacking interaction between two isonicotinamide ligands in crystal structures of 1 and 3.

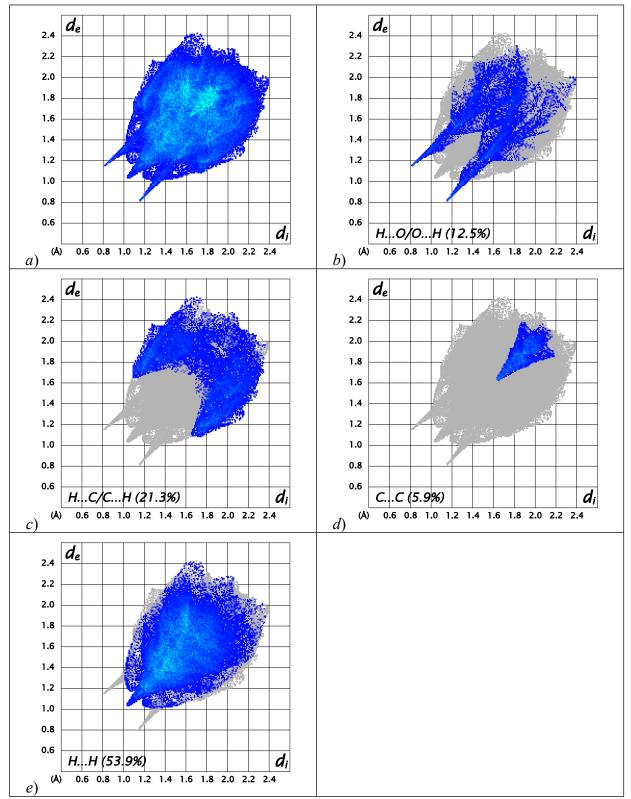


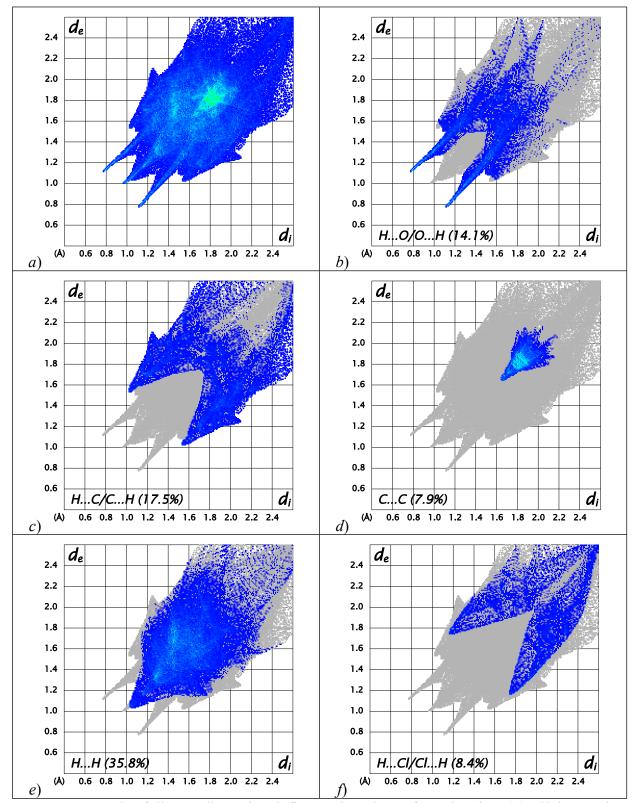

Figure S3. The C–H···F hydrogen bonding interaction in crystal structure of **5**.

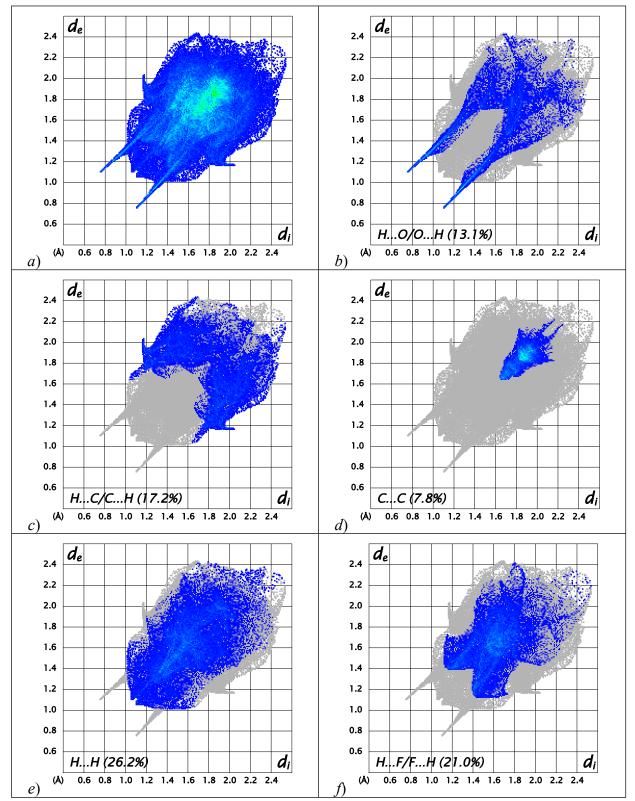

Figure S4. View of the three-dimensional Hirshfeld surface of **3** plotted over d_{norm} in the range -0.4902 to 1.2118 a.u. (top) and shape-index (bottom).


Figure S5. View of the three-dimensional Hirshfeld surface of **2** plotted over d_{norm} in the range -0.4498 to 1.5102 a.u..


Figure S6. View of the three-dimensional Hirshfeld surface of 4 plotted over d_{norm} in the range -0.5379 to 1.6017a.u. (top) and shape-index (bottom).


Figure S7. View of the three-dimensional Hirshfeld surface of **5** plotted over d_{norm} in the range -0.5661 to 1.1584 a.u. (top) and shape-index (bottom).


Figure S8. The full two-dimensional fingerprint plots of **1**, showing (*a*) all interactions, (b) H···O/O···H, (c) H···C/C···H, (*d*) C···C, (*e*) H···H, and (*f*) H···Cl/Cl···H interactions. The d_i and d_e values are the closest internal and external distances from given on the Hirshfeld surface contacts.


Figure S9. The full two-dimensional fingerprint plots of **2**, showing (*a*) all interactions, (b) H···O/O···H, (c) H···C/C···H, (*d*) C···C, (*e*) H···H, and (*f*) H···Cl/Cl···H interactions. The d_i and d_e values are the closest internal and external distances from given on the Hirshfeld surface contacts.

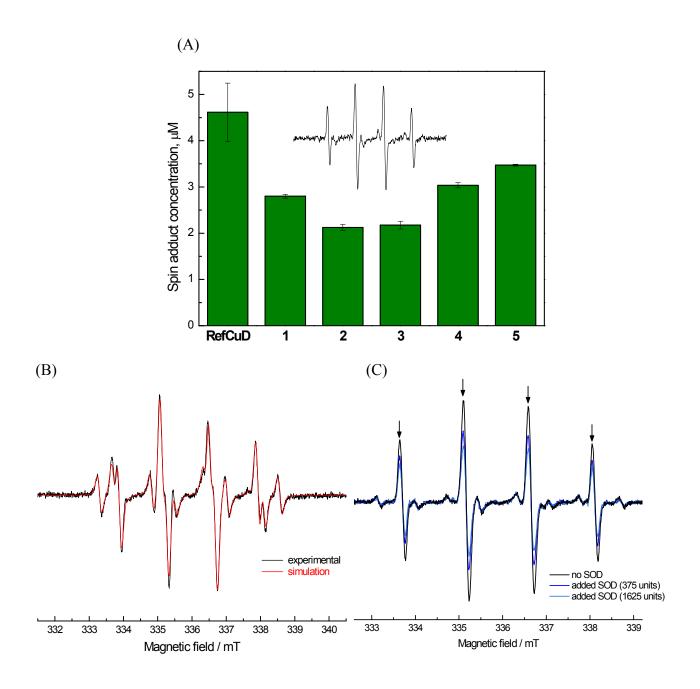

Figure S10. The full two-dimensional fingerprint plots of **3**, showing (*a*) all interactions, (b) H···O/O···H, (c) H···C/C···H, (*d*) C···C, and (*e*) H···H interactions. The d_i and d_e values are the closest internal and external distances from given on the Hirshfeld surface contacts.

Figure S11. The full two-dimensional fingerprint plots of 4, showing (*a*) all interactions, (b) H···O/O···H, (c) H···C/C···H, (*d*) C···C, (*e*) H···H, and (*f*) H···Cl/Cl···H interactions. The d_i and d_e values are the closest internal and external distances from given on the Hirshfeld surface contacts.

Figure S12. The full two-dimensional fingerprint plots of **5**, showing (*a*) all interactions, (b) H···O/O···H, (c) H···C/C···H, (*d*) C···C, (*e*) H···H, and (*f*) H···F/F···H interactions. The d_i and d_e values are the closest internal and external distances from given on the Hirshfeld surface contacts.

Figure S13. (A) The total concentration of DMPO spin-adducts observed in DMSO/water (1:4; v:v) solution of CuCl₂ (reference) or studied copper complexes containing DMPO spin trapping agent after the addition of hydrogen peroxide. Inset represents the EPR spectrum measured for the system $5 / DMPO/H_2O_2/H_2O/DMSO/air.(B)$ Experimental (–) and simulated (–) EPR spectra obtained in the system CuCl₂/H₂O₂/BMPO/DMSO:H₂O(1:4; v:v) under air. The simulation represents a linear combination of the EPR signals assigned to the following spin adducts: •BMPO-OH(1) (a_N =1.41 mT, $a_H\beta$ =1.26 mT, $a_H\gamma$ =0.06mT; g=2.0057; relative concentration60%); •BMPO-OH(2) (a_N =1.42 mT, $a_H\beta$ =1.56 mT, $a_H\gamma$ =0.05 mT; g=2.0057; 30%); •BMPO-CH₃ (a_N =1.52 mT, $a_H\beta$ =2.21 mT; g=2.0056; 10%). (C)Decline of the EPR spectra obtained in the system CuCl₂/H₂O₂/DMPO/DMSO:H₂O(1:4; v:v) under airupon the addition of SOD. Initial concentrations: $c(CuCl_2) = c(1-5) = 0.2$ mM; c(DMPO/BMPO) = 0.02 M; $c(H_2O_2) = 0.01$ M.

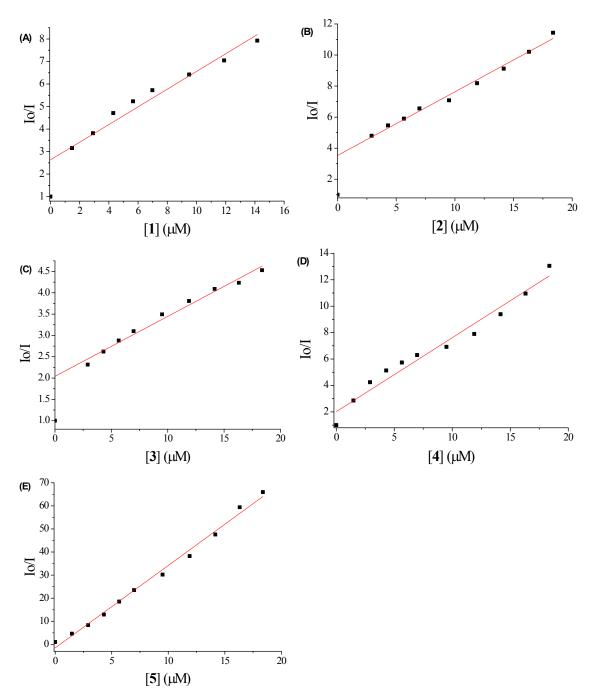


Figure S14. Stern-Volmer quenching plot of BSA for complex (A) 1, (B) 2, (C) 3, (D) 4 and (E) 5.

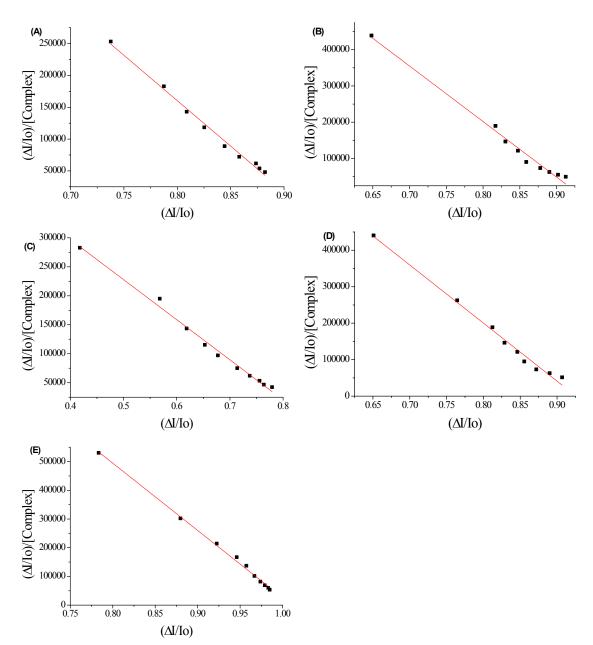


Figure S15. Scatchard plot of BSA for complex (A) 1, (B) 2, (C) 3, (D) 4 and (E) 5.

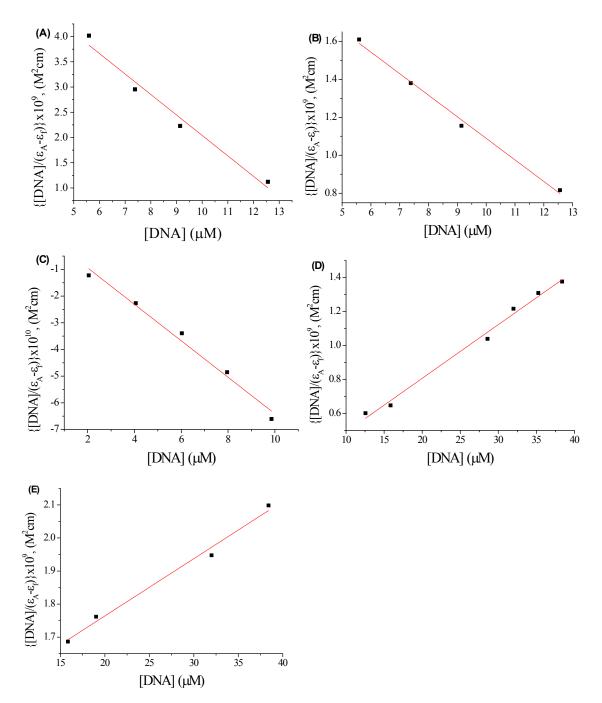
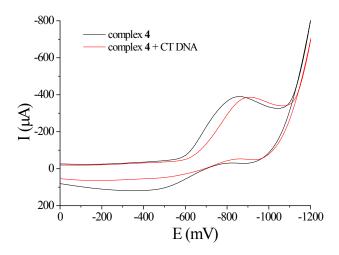



Figure S16. Plot of [DNA]/ $(\epsilon_A - \epsilon_f)$ versus [DNA] for complex (A) 1, (B) 2, (C) 3, (D) 4 and (E) 5.

Figure S17. Cyclic voltammogram of 0.4 mM 1/2 DMSO/buffer (containing 150 mM NaCl and 15 mM trisodium citrate at pH = 7.0) solution of complex **4** in the absence (black line) or presence (red line) of CT DNA. Scan rate = 100 mV s⁻¹. Supporting electrolyte = buffer solution. The arrows show the changes upon addition of CT DNA.

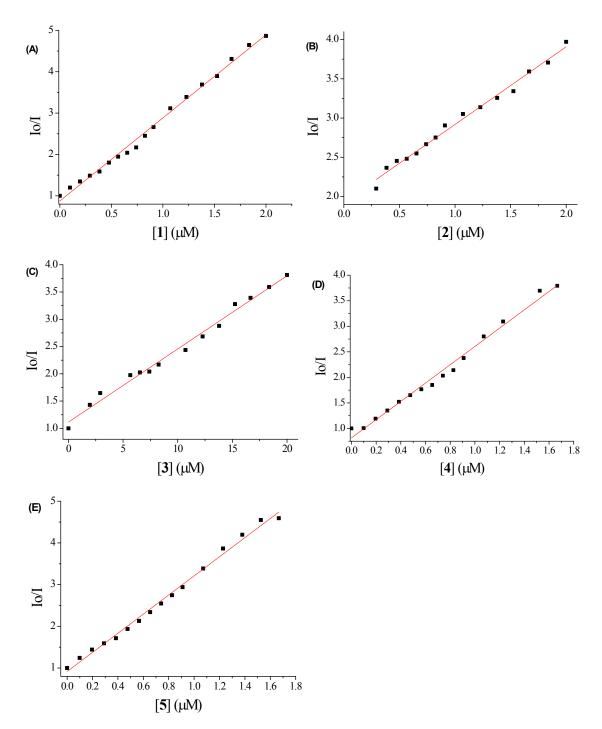


Figure S18. Stern-Volmer quenching plot of EB-DNA fluorescence for complex (A) 1, (B) 2, (C) 3, (D) 4 and (E) 5.