Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Supporting Information

Serendipitous isolation of triazinone based air stable organic radical: synthesis, crystal structure and computation

Vedichi Madhu,*, ^{a, b} Arun Kumar Kanakati,^b Samar K. Das*,^b

^aDepartment of Chemistry, Karunya Institute of Technology and Science, Coimbatore-641 114, Tamil Nadu, India. Tel: +91-422-261-4483; *E-mail: <u>madhu@karunya.edu; vmadhuu1@gmail.com</u>

^bSchool of Chemistry, University of Hyderabad, Central University P.O., Hyderabad 500 046, Telangana, India, E-mail: skdas@uohyd.ac.in, <u>samar439@gmail.com</u>

Table of Contents

- 1. Experimental Section
- 2. NMR studies
- 3. Single crystal X-ray crystallographic analysis
- 4. Computational Details
- 5. References

1. Experimental Section

1.1. Materials and methods

All the reactions were performed under ultrahigh pure nitrogen atmosphere unless mentioned elsewhere. All the deuterated NMR solvents were purchased from Acros Organics, and the other commercially procured chemicals were used as received. The NMR spectra were recorded by Bruker AV-400 400 MHz spectrometer using tetramethylsilane as internal standard in case of CDCl₃ solvent. The electron spin resonance (ESR) spectra were recorded on a (JEOL) JESFA200 ESR spectrometer. The IR spectra (with KBr pellets) were recorded over the range 400–4000 cm⁻¹ with a JASCO FT/IT-5300 spectrometer. Elemental analysis was performed by FLASH EA series 1112 CHNS analyzer.

Synthesis of $[1^{2+}(PF_6)_2^{2-}\cdot 2H_2O \equiv 1(PF_6)_2\cdot 2H_2O]$: Cyanuric chloride (100 mg, 0.54 mmol) was dissolved in dry CH₃CN (15 mL) in 25 mL round bottom flask. To this mixture were added 4,4'-bipyridine (250 mg, 1.67 mmol) and resulting reaction mixture was refluxed for 3 hrs with stirring at 80°C under dry N₂ atmosphere and then cooled to room temperature. This afforded green colored precipitate, which was filtered off and dried in air. The resulting product was dissolved in water by slightly warming and the clear solution was filtered. To this filtrate, NH₄PF₆ were added economically until the precipitation was completed. This product was filtered off, and dried in air. The yield 176 mg (81% based of 4,4'-bipyridine). IR (KBr pellet) (v/cm⁻¹): 3657, 3400, 3130, 2557, 2146, 1631, 1570, 1496, 1444, 1391, 1337, 1207, 1163, 1033, 997, 837, 760, 652, 630, 557, 491. ¹H NMR (400 MHz, DMSO-*d*₆): ¹H NMR (400 MHz, DMSO-*d*₆): δ 7.85 (d, J = 7.2 Hz, 4H), 6.53 (br s, 4H), 6.31 (d, J = 6.8 Hz, 4H), 5.85 (d, J = 4.4 Hz, 4H). ¹³C NMR (400 MHz, DMSO-*d*₆): δ 165.0, 163.4, 157.1, 149.5, 146.5, 141.9, 125.8, 123.8. Anal. Calcd for C₂₃H₂₀F₁₂N₇O₃P₂: C, 37.70; H, 2.75; N, 13.39. Found: C, 38.32; H, 2.98; N, 12.84.

Synthesis of $[1^+PF_6^- \equiv 1^+PF_6]$: Cyanuric chloride (100 mg, 0.54 mmol) was dissolved in dry CH₃CN (15 mL) in 25 mL round bottom flask. To this mixture were added 4,4'-bipyridine (250 mg, 1.67 mmol) and resulting reaction mixture was refluxed for 48 hrs

with stirring at 80°C under dry N₂ atmosphere and then cooled to room temperature, affording pale green color precipitate, that was filtered off and dried in air. The resulting product was dissolved in water by slightly warming and the clear solution was obtained by its filtering. To this filtrate, NH_4PF_6 were added economically until the precipitation was completed. This product was filtered off, and dried in air. The yield is 100 mg (32%). IR (KBr pellet) (v/cm⁻¹): 3445, 3134, 3086, 3057, 1618, 1552, 1496, 1388, 1338, 1288, 1159, 810. Anal. Calcd for $C_{23}H_{16}F_6N_7OP$: C, 50.08; H, 2.93; N, 17.79. Found: C, 51.22; H, 2.71; N, 18.41.

2. NMR studies

Fig. S1 ¹H NMR spectrum for compound 1(PF₆)₂·2H₂O].

3. Single crystal X-ray crystallographic analysis

Crystal data were measured at 100(2) K on a Bruker SMART APEX CCD area detector system [λ (Mo-K α) = 0.71073 Å], graphite monochromator; 2400 frames were recorded with an ω scan width of 0.3°, each for 8 s, crystal-detector distance 60 mm, collimator 0.5 mm. Data reduction by SAINTPLUS,^[1] absorption correction using an empirical method SADABS,^[2] structure solution using SHELXS-97^[3] and refined using SHELXL-97.^[4] All non-hydrogen atoms were refined anisotropically. Hydrogen atoms were introduced on calculated positions and included in the refinement riding on their respective parent atoms. A summary of the crystallographic data and structural determination for 1(PF₆)₂·2H₂O and 1'PF₆ are provided in SI Table 1. The complete bond lengths and angles for the compounds 1(PF₆)₂·2H₂O and 1'PF₆ have been provided in SI (Table 2).

Fig. S3 Infinite 2D network in the crystal structure of $1(PF_6)_2 \cdot 2H_2O$, formed by bifurcated N····O=C non-covalent interactions. Hydrogen atoms, the counter anions, and the solvents are eliminated for clarity; color code, gray, carbon; blue, nitrogen; red, oxygen.

1(PF ₆) ₂ ·2H ₂ O	1*PF6
Empirical formula	$C_{23}H_{21}F_{12}N_7O_3P_2$	$C_{23}H_{16}F_6N_7OP$
Formula weight	728.37	551.40
T [K]	100(2)	100(2)
λ[Å]	0.71073	0.71073
Crystal system	Triclinic	Monoclinic
Space group	Pī	P2(1)/c
<i>a</i> [Å]	8.633(4)	5.036(2)
<i>b</i> [Å]	12.422(6)	19.412(9)
<i>c</i> [Å]	13.653(6)	23.741(10)
α [deg]	87.328(8)	90
β [deg]	89.110(7)	87.874(10)
γ [deg]	79.874(8)	90
V[Å ³]	1439.9(12)	2319.2(18)
Z	2	4
D _{calc} [Mg m ⁻³]	1.680	1.579
$\mu [\mathrm{mm}^{-1}]$	0.270	0.201
F[000]	730	1120
Crystal size [mm ³]	0.30 x 0.10 x 0.04	0.28 x 0.08 x 0.06
θ range for data		
collection [deg]	2.833 to 22.497	1.355 to 25.00
Reflections collected/unit	ique 9540/3377	14864/4044
R (int)	0.0972	0.1317
Refinement method	Full-matrix	k least-squares on F ²
Data/restraints/paramete	rs 3377 / 0 / 424	4044 / 0 / 343
Goodness-of-fit on F ²	0.989	0.972
$R_{1/W}R_2 [I > 2\sigma(I)]$	0.0809/0.1874	0.0683/0.1395
R_1/wR_2 (all data)	0.1513/0.2247	0.1620/0.1747
Largest diff. Peak/hole	0.450 /-0.302	0.378/-0.321
[e Å ⁻³]		

Table S1. Crystal data and structural refinement for compounds $1(PF_6)_2 \cdot 2H_2O$ and $1^{\circ}PF_6$

N(6)-C(9)	1.351(8)	N(4)-C(11)-N(5)	128.8(6)
N(6)-C(8)	1.386(9)	N(4)-C(11)-N(6)	118.2(6)
N(6)-C(11)	1.435(9)	N(5)-C(11)-N(6)	113.0(6)
N(3)-C(13)	1.276(8)	N(3)-C(13)-N(5)	129.5(6)
N(3)-C(25)	1.414(9)	N(3)-C(13)-N(2)	118.5(6)
N(4)-C(11)	1.299(8)	N(5)-C(13)-N(2)	112.0(6)
N(4)-C(25)	1.393(9)	C(10)-C(9)-N(6)	119.8(7)
O(1)-C(25)	1.188(8)	C(10)-C(6)-C(7)	115.2(7)
N(2)-C(14)	1.306(10)	C(10)-C(6)-C(5)	123.6(7)
N(2)-C(15)	1.336(9)	C(15)-C(16)-C(18)	120.3(7)
N(5)-C(13)	1.341(9)	N(6)-C(8)-C(7)	118.3(6)
C(9)-C(10)	1.342(9)	C(9)-C(10)-C(6)	123.6(7)
C(6)-C(10)	1.401(10)	C(23)-C(19)-C(20)	116.8(7)
C(7)-C(8)	1.388(10)	C(23)-C(19)-C(18)	122.6(7)
C(19)-C(20)	1.408(10)	C(20)-C(19)-C(18)	120.5(7)
C(19)-C(18)	1.508(9)	C(1)-C(3)-C(5)	119.8(7)
N(7)-C(1)	1.299(9)	C(16)-C(18)-C(17)	117.3(7)
N(7)-C(2)	1.329(9)	C(16)-C(18)-C(19)	121.2(6)
C(3)-C(1)	1.365(11)	C(17)-C(18)-C(19)	121.5(7)
C(3)-C(5)	1.386(9)	C(21)-N(1)-C(22)	116.7(7)
C(18)-C(17)	1.381(10)	N(2)-C(15)-C(16)	122.2(7)
N(1)-C(22)	1.331(12)	C(2)-C(4)-C(5)	122.4(7)
C(5)-C(4)	1.400(10)	N(2)-C(14)-C(17)	122.1(8)
C(9)-N(6)-C(8)	121.2(6)	N(7)-C(1)-C(3)	122.2(7)
C(8)-N(6)-C(11)	117.6(6)	N(7)-C(2)-C(4)	119.1(8)
C(14)-N(2)-C(15)	118.8(6)	N(1)-C(21)-C(20)	124.4(8)
C(14)-N(2)-C(13)	121.8(6)	O(1)-C(25)-N(4)	121.8(6)
C(15)-N(2)-C(13)	119.4(6)	O(1)-C(25)-N(3)	121.2(6)
C(13)-N(5)-C(11)	109.9(6)	N(4)-C(25)-N(3)	116.9(7)

Table S2. Selected bond lengths [Å] and angles [°] for compound $1(PF_6)_2 \cdot 2H_2O$

N(4)-C(4)	1.344(5)	C(21)-C(23)	1.362(7)
N(4)-C(2)	1.466(5)	N(4)-C(5)	1.353(5)
N(6)-C(14)	1.326(5)	N(2)-C(2)	1.284(5)
N(6)-C(3)	1.458(5)	O(1)-C(1)	1.224(4)
N(3)-C(2)	1.326(5)	N(6)-C(15)	1.329(5)
N(1)-C(1)	1.398(5)	N(3)-C(3)	1.319(5)
C(7)-C(8)	1.386(5)	N(1)-C(3)	1.290(5)
C(8)-C(9)	1.471(6)	C(7)-C(4)	1.368(6)
C(9)-C(10)	1.366(7)	C(8)-C(6)	1.392(6)
N(7)-C(22)	1.305(7)	N(7)-C(23)	1.316(6)
C(22)-C(20)	1.377(7)	N(5)-C(12)	1.319(7)
N(5)-C(13)	1.326(6)	C(13)-C(10)	1.379(7)
C(4)-N(4)-C(5)	120.1(4)	C(3)-N(1)-C(1)	115.0(4)
C(14)-N(6)-C(3)	120.7(3)	N(2)-C(2)-N(4)	116.3(4)
C(3)-N(3)-C(2)	109.7(3)	N(4)-C(5)-C(6)	120.4(4)
N(2)-C(2)-N(3)	131.0(4)	C(10)-C(9)-C(8)	122.2(4)
N(3)-C(2)-N(4)	112.7(3)	C(16)-C(17)-C(18)	116.4(4)
N(1)-C(3)-N(3)	130.5(4)	C(18)-C(17)-C(19)	122.0(4)
N(3)-C(3)-N(6)	112.5(3)	N(1)-C(3)-N(6)	116.9(4)
O(1)-C(1)-N(2)	120.7(4)	O(1)-C(1)-N(1)	120.1(4)
C(5)-C(6)-C(8)	121.5(4)	N(1)-C(1)-N(2)	119.2(3)
C(15)-C(16)-C(17)	120.6(4)	N(4)-C(4)-C(7)	120.5(4)
N(6)-C(14)-C(18)	121.0(4)	C(12)-C(11)-C(9)	119.4(5)
C(20)-C(19)-C(21)	115.7(4)	N(6)-C(15)-C(16)	121.1(4)
C(21)-C(19)-C(17)	122.1(4)	C(22)-N(7)-C(23)	114.9(5)
N(7)-C(22)-C(2)	125.0(5)	C(14)-C(18)-C(17)	120.8(4)
C(12)-N(5)-C(13)	115.5(5)	C(19)-C(20)-C(22)	119.7(5)
N(5)-C(12)-C(11)	124.7(5)	N(5)-C(13)-C(10)	123.9(6)
C(15)-N(6)-C(3)	119.2(3)	C(9)-C(10)-C(13)	120.2(5)

Table S3. Selected bond lengths [Å] and angles [°] for compound $1^{\circ}PF_{6}$

4. Computational Details:

The geometry optimizations of the molecules have been carried out using the DFT, M062X Minnesota functionals with DZVP basis set. Gaussian-09 program package is used for this purpose. The nature of the stationary points was verified by calculation of the vibrational frequencies.

Coordinates of the optimized geometry of 1²⁺:

Center	Atomic	Atomic Coordinates (Angstroms)				
Number	Number	Туре	Х	Ŷ	Ź	
1	15	0	0.000181	-3.619587	0.190508	
2	9	0	1.161195	-2.479387	-0.180442	
3	9	0	1.164828	-4.661688	0.597613	
4	9	0	-1.161116	-2.479598	-0.180198	
5	9	0	-1.164180	-4.661909	0.597852	
6	9	0	0.000286	-3.012899	1.740422	
7	9	0	0.000070	-4.118964	-1.342335	
8	15	0	-0.000191	3.663223	0.911224	
9	9	0	1.152861	2.614851	1.491767	
10	9	0	-0.000194	4.465970	2.300993	
11	9	0	-1.163529	4.590282	0.285371	
12	9	0	-0.000110	2.749521	-0.513250	
13	9	0	1.163114	4.590334	0.285421	
14	9	0	-1.153135	2.614702	1.491767	
15	7	0	2.344298	-0.072126	0.659014	
16	7	0	-1.206327	-0.540128	2.649892	
17	7	0	1.206332	-0.540088	2.649909	
18	8	0	-0.000003	-0.994935	4.514477	
19	7	0	-2.344287	-0.072196	0.658984	
20	7	0	0.000005	0.032479	0.700833	
21	6	Õ	1.108926	-0.194129	1.400365	
22	6	0	-1 108920	-0 194157	1 400352	
23	6	0	2 432191	0 803684	-0 372309	
24	1	Õ	1.562599	1.417154	-0.565988	
25	6	Õ	4 700107	0 077202	-0 776364	
26	6	Õ	4 555575	-0.824101	0 292293	
20	1	Õ	5 365561	-1 476304	0 587406	
<i>—</i> ,	T	v	2.202201	1.170201	0.207 100	

Standard orientation:

28	6	0	-4.555561	-0.824214	0.292303
29	1	0	-5.365539	-1.476412	0.587453
30	6	0	3.377199	-0.885448	0.993016
31	1	0	3.198837	-1.558395	1.817870
32	6	0	3.603040	0.893215	-1.089380
33	1	0	3.645500	1.596816	-1.909007
34	6	0	-5.960211	0.158416	-1.542222
35	7	0	8.359977	0.314284	-2.994815
36	6	0	6.717181	-0.986744	-1.815512
37	1	0	6.385374	-1.968856	-1.501129
38	6	0	-4.700111	0.077041	-0.776392
39	7	0	-8.360006	0.314017	-2.994811
40	6	0	5.960200	0.158616	-1.542204
41	6	0	-3.603051	0.893045	-1.089451
42	1	0	-3.645521	1.596609	-1.909108
43	6	0	-3.377182	-0.885514	0.993024
44	1	0	-3.198813	-1.558417	1.817911
45	6	0	6.439446	1.384037	-2.019986
46	1	0	5.914206	2.310211	-1.820342
47	6	0	-2.432198	0.803564	-0.372381
48	1	0	-1.562622	1.417043	-0.566115
49	6	0	7.894717	-0.854110	-2.545459
50	1	0	8.490610	-1.730552	-2.781287
51	6	0	-6.439464	1.383815	-2.020056
52	1	0	-5.914222	2.309999	-1.820460
53	6	0	-6.717196	-0.986956	-1.815468
54	1	0	-6.385387	-1.969054	-1.501042
55	6	0	7.637798	1.405478	-2.727623
56	1	0	8.036159	2.346289	-3.095085
57	6	0	-7.637823	1.405223	-2.727680
58	1	0	-8.036189	2.346018	-3.095181
59	6	0	-7.894742	-0.854356	-2.545406
60	1	0	-8.490638	-1.730809	-2.781185
61	6	0	0.000001	-0.707110	3.309144

Coordinates of the optimized radical cation (2^{+}) in the doublet state:

Contor	Atomio		ia Caar	dinatas (Anast	roma)
Number	Atomic	Atom Type	ic Coord X	unates (Angst V	roms) 7
				1	<i>L</i>
1	15	0	-0.000049	2.253241	-0.000112
2	9	0	-0.527752	1.040271	1.005691
3	9	0	0.527647	1.040223	-1.005861
4	9	0	0.549449	3.347364	-1.019075
5	9	0	-0.549540	3.347412	1.018805
6	9	0	1.441561	2.197409	0.769849
7	9	0	-1.441655	2.197384	-0.770078
8	7	0	-2.337806	-1.772767	-0.060695
9	7	0	-1.196173	-3.825046	-0.006655
10	8	0	0.000047	-5.753077	-0.000109
11	7	0	2.337824	-1.772729	0.060657
12	7	0	0.000008	-1.787160	-0.000018
13	7	0	1.196227	-3.825024	0.006589
14	6	0	-1.111658	-2.510722	-0.017414
15	6	0	-4.660780	-1.650669	0.381556
16	1	0	-5.553034	-2.125976	0.772938
17	6	0	-4.682863	-0.310513	-0.064155
18	6	0	-2.322118	-0.489110	-0.518247
19	1	0	-1.370227	-0.099987	-0.864551
20	6	0	-5.919180	0.486900	-0.027317
21	6	0	4.682881	-0.310473	0.064227
22	6	0	1.111687	-2.510701	0.017371
23	6	0	0.000033	-4.462707	-0.000004
24	6	0	-3.484224	0.245827	-0.532758
25	1	0	-3.427192	1.257099	-0.917060
26	6	0	-3.492546	-2.362835	0.372375
27	1	0	-3.407671	-3.387933	0.711601
28	6	0	3.484209	0.245884	0.532727
29	1	0	3.427149	1.257167	0.916998
30	6	0	-5.863308	1.866570	0.198718
31	1	0	-4.922928	2.379270	0.378041
32	6	0	3.492590	-2.362807	-0.372328
33	1	0	3.407740	-3.387916	-0.711525

Standard orientation:

34	6	0	2.322106	-0.489055	0.518160
35	1	0	1.370186	-0.099913	0.864361
36	6	0	5.919206	0.486931	0.027462
37	7	0	8.258464	2.021699	-0.055344
38	6	0	8.303961	0.706757	0.168901
39	1	0	9.290752	0.278950	0.323815
40	6	0	4.660824	-1.650639	-0.381455
41	1	0	5.553104	-2.125957	-0.772766
42	7	0	-8.258417	2.021691	0.055637
43	6	0	7.173085	-0.106317	0.210721
44	1	0	7.281394	-1.165599	0.423000
45	6	0	-7.060188	2.580201	0.238518
46	1	0	-7.051277	3.650231	0.427058
47	6	0	-8.303943	0.706747	-0.168586
48	1	0	-9.290749	0.278947	-0.323421
49	6	0	5.863364	1.866598	-0.198598
50	1	0	4.923003	2.379305	-0.377998
51	6	0	-7.173078	-0.106339	-0.210475
52	1	0	-7.281413	-1.165624	-0.422729
53	6	0	7.060254	2.580217	-0.238320
54	1	0	7.051366	3.650244	-0.426877

5. References

- Software for the CCD Detector System; Bruker Analytical X-Ray Systems Inc.: Madison, WI, 1998.
- Sheldrick, G. M. SADABS, A Program for Absorption Correction with the Siemens SMART Area-Detector System; University of Göttingen: Germany, 1996.
- 3. Sheldrick, G. M. SHELXS-97, A Program for Solution of Crystal Structures; University of Göttingen: Germany, 1997.
- 4. Sheldrick, G. M. SHELXL-97, A Program for Refinement of Crystal Structures; University of Göttingen: Germany, 1997.