Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Supporting information

## Metal centre in salen-acridine dyad N<sub>2</sub>O<sub>2</sub> ligand-metal complex modulates DNA binding and photocleavage efficiency

Panneerselvam ArunPrasanth,<sup>a</sup> Periyappan Nantheeswaran,<sup>a</sup> Veerappan

Anbazhagan,<sup>b\*</sup> Rajendran Senthilnathan,<sup>b</sup> Arunachalam Jothi,<sup>b</sup> Nattamai S. P.

Bhuvanesh,<sup>c</sup> Lokesh Koodlur Sannegowda,<sup>d</sup> Mariappan Mariappan<sup>a\*</sup>

<sup>a</sup>Department of Chemistry, SRM University, Kattankulathur, Chennai, Tamil Nadu,

India

<sup>b</sup>School of Chemical and Biotechnology, SASTRA University,

Thirumalaisamudaram, Thanjavur, Tamil Nadu, India

<sup>c</sup>X-ray Diffraction Lab, Department of Chemistry, Texas A&M University, College Station, Texas 77842-3012, United States

<sup>d</sup>Department of Chemistry, VSK University, Ballari, 583105, Karnataka, (India)

\* Corresponding author M. M.: Phone: +91 8870249167; Fax: +91 44-27453903 e-mail: <u>tmmari@yahoo.com</u>, <u>mariappm@srmist.edu.in</u> V. A.: Phone: +91 4362-264101-3689; Fax: +91 4362-264120 Email: <u>anbazhagan@scbt.sastra.edu</u>



Fig. S1: <sup>1</sup>H NMR spectra of (a)  $H_2$ daasal (in CDCl<sub>3</sub>) and (b) [Zn(daasal)] (in C<sub>5</sub>D<sub>5</sub>N).



**Fig. S2**: ESR spectra of [Cu(daasal)] in (a) powder phase (298 K) (b) powder phase (110 K) and (c) frozen (110 K) DMF-toluene (1:1).



**Fig. S3:** Cyclic (.....) and differential pulse (—) voltammograms of (a) [Cu(daasal)] and (b) [Zn(daasal)] in CH<sub>3</sub>CN and DMF containing 0.1 M TBAP as solvents for the anodic and cathodic runs, respectively. Scan rate: 100 mV s<sup>-1</sup>.



**Fig. S4**: Solvent dependent absorption (a, b) and emission spectra (c, d) for the compounds [Cu(dasal)] and [Zn(dasal)] at 0.2 OD. Quantum yield was calculated using the following equation

 $Q_{f} = Q_{ref} \times a_{ref} / a_{sam} \times A_{smp} / A_{ref} \times (n_{sam} / n_{ref})^{2}$ 

where  $Q_f$  = Quantum yield of sample,  $Q_{ref}$  = Quantum yield of reference,  $a_{ref}$  = Integral area of reference,  $a_{sam}$  = Integral area of sample,  $A_{ref}$  = Absorbance of reference,  $A_{sam}$  = Absorbance of sample,  $n_{sam}$  = refractive index of the solvent (for sample),  $n_{ref}$  = refractive index of the solvent (for reference)



**Fig. S5:** Thermal melting curves of CT DNA (150  $\mu$ M) in the absence ( $\bullet$ ) and in the presence (cR) of (a) [Cu(daasal)] and (b) [Zn(daasal)] ([(DNA)]/ [complex] = 25) in buffer B.



**Fig. S6:** Viscosity measurement for CT DNA (300  $\mu$ M, Buffer C) with the complexes [Cu(daasal)] ( $\square$ ), [Zn(daasal)] ( $\blacksquare$ ) and EtBr ( $\oplus$ ) in buffer C.



**Fig. S7:** Optimised structure of [Cu(daasal)] bound to the  $d(CG)_{10}$  sequence in the major groove region. The heat of formation for this model is -16.33 kcal/mole

| Zn(1)-O(1)       | 1.9766(13) | C(16)-N(2)-Zn(1)  | 112.87(11) |
|------------------|------------|-------------------|------------|
| Zn(1)-O(2)       | 1.9791(13) | C(34)-N(3)-Zn(1)  | 120.10(13) |
| Zn(1)-N(1)       | 2.0932(15) | C(38)-N(3)-Zn(1)  | 121.59(12) |
| Zn(1)-N(2)       | 2.0911(14) | C(38)-N(3)-C(34)  | 118.01(16) |
| Zn(1)-N(3)       | 2.0860(15) | C(23)-N(4)-C(24)  | 118.12(15) |
| O(1)-C(3)        | 1.294(2)   | N(1)-C(1)-H(1)    | 117.2      |
| O(2)-C(10)       | 1.304(2)   | N(1)-C(1)-C(2)    | 125.65(16) |
| N(1)-C(1)        | 1.298(2)   | O(1)-C(3)-C(2)    | 124.37(16) |
| N(1)-C(15)       | 1.420(2)   | O(1)-C(3)-C(4)    | 118.85(16) |
| N(2)-C(8)        | 1.299(2)   | N(2)-C(8)-H(8)    | 117.4      |
| N(2)-C(16)       | 1.417(2)   | N(2)-C(8)-C(9)    | 125.13(16) |
| N(3)-C(34)       | 1.344(2)   | O(2)-C(10)-C(9)   | 124.71(16) |
| N(3)-C(38)       | 1.340(2)   | O(2)-C(10)-C(11)  | 118.37(16) |
| N(4)-C(23)       | 1.344(2)   | C(16)-C(15)-N(1)  | 116.01(15) |
| N(4)-C(24)       | 1.346(2)   | C(20)-C(15)-N(1)  | 124.52(16) |
| O(1)-Zn(1)-O(2)  | 93.46(5)   | C(15)-C(16)-N(2)  | 115.62(15) |
| O(1)-Zn(1)-N(1)  | 89.02(5)   | C(17)-C(16)-N(2)  | 125.14(16) |
| O(1)-Zn(1)-N(2)  | 157.98(6)  | C(18)-C(19)-C(21) | 119.79(16) |
| O(1)-Zn(1)-N(3)  | 98.62(6)   | C(20)-C(19)-C(21) | 120.92(16) |
| O(2)-Zn(1)-N(1)  | 151.70(6)  | C(22)-C(21)-C(19) | 120.40(16) |
| O(2)-Zn(1)-N(2)  | 89.29(5)   | N(4)-C(23)-C(22)  | 123.47(16) |
| O(2)-Zn(1)-N(3)  | 101.56(6)  | N(4)-C(23)-C(29)  | 117.84(16) |
| N(2)-Zn(1)-N(1)  | 78.54(6)   | N(4)-C(24)-C(25)  | 123.06(17) |
| N(3)-Zn(1)-N(1)  | 105.92(6)  | N(4)-C(24)-C(30)  | 118.34(16) |
| N(3)-Zn(1)-N(2)  | 102.22(6)  | N(3)-C(34)-H(34)  | 118.8      |
| C(3)-O(1)-Zn(1)  | 130.67(12) | N(3)-C(34)-C(35)  | 122.39(18) |
| C(10)-O(2)-Zn(1) | 129.68(11) | N(3)-C(38)-C(37)  | 123.32(18) |
| C(1)-N(1)-Zn(1)  | 125.92(12) | N(3)-C(38)-H(38)  | 118.3      |
| C(1)-N(1)-C(15)  | 121.17(15) |                   |            |
| C(15)-N(1)-Zn(1) | 112.83(11) |                   |            |
| C(8)-N(2)-Zn(1)  | 126.26(12) |                   |            |

C(8)-N(2)-C(16)

120.70(15)

Table S1: Selected bond lengths [Å] and angles [°] for [Zn(daasal)].C5H5N

Table S2: Redox potential data

| Compound               | Oxidation <sup>b</sup>      | Reduction <sup>c</sup>      |
|------------------------|-----------------------------|-----------------------------|
| Compound               | E <sub>1/2</sub> (V vs SCE) | E <sub>1/2</sub> (V vs SCE) |
| acridine               |                             | -1.46                       |
| daa                    | $+0.88, +1.40^{d}$          | -0.77, -1.07 <sup>d</sup>   |
| salicylaldehyde        |                             | -1.82                       |
| H <sub>2</sub> daasal* |                             | - 1.44                      |
| [Ni(daasal)] *         | +1.03                       | -1.21, -1.48                |
| [Cu(daasal)]           | +0.96                       | -1.35, -1.76                |
| [Zn(daasal)]           |                             | -1.45, -1.91                |

a) Obtained from the differential pulse voltammetri measurements. Error

limits:  $E_{1/2} \pm 0.03$  V, 0.1 M TBAP

b) CH<sub>3</sub>CN

- c) DMF
- d)  $CH_2Cl_2$

\* M. Mariappan, M. Suenaga, A. Mukhopadhyay, B. G. Maiya, Inorg. Chim. Acta 390 (2012) 95–104

## Appendix

Table A1: Atomic coordinates (× 10<sup>4</sup>) and equivalent isotropic displacement parameters ( $Å^2 \times 10^3$ ) for MMB\_180511\_V\_ZnH2LSal. U(eq) is defined as one third of the trace of the orthogonalized U<sup>ij</sup> tensor.

|       | Х        | У       | Z        | U(eq) |  |
|-------|----------|---------|----------|-------|--|
| Zn(1) | 9801(1)  | 6966(1) | 6749(1)  | 13(1) |  |
| O(1)  | 11400(1) | 6713(1) | 8115(1)  | 18(1) |  |
| O(2)  | 10856(1) | 7437(1) | 6326(1)  | 17(1) |  |
| N(1)  | 8914(2)  | 6344(1) | 6438(1)  | 13(1) |  |
| N(2)  | 8306(2)  | 7042(1) | 4911(1)  | 13(1) |  |
| N(3)  | 8970(2)  | 7296(1) | 7941(2)  | 16(1) |  |
| N(4)  | 2519(2)  | 4967(1) | 3182(1)  | 16(1) |  |
| C(1)  | 9407(2)  | 5994(1) | 7111(2)  | 14(1) |  |
| C(2)  | 10693(2) | 5964(1) | 8154(2)  | 14(1) |  |
| C(3)  | 11619(2) | 6322(1) | 8595(2)  | 14(1) |  |
| C(4)  | 12860(2) | 6233(1) | 9631(2)  | 17(1) |  |
| C(5)  | 13150(2) | 5826(1) | 10195(2) | 18(1) |  |
| C(6)  | 12230(2) | 5477(1) | 9766(2)  | 18(1) |  |
| C(7)  | 11029(2) | 5549(1) | 8758(2)  | 16(1) |  |
| C(8)  | 8296(2)  | 7331(1) | 4044(2)  | 13(1) |  |
| C(9)  | 9327(2)  | 7653(1) | 4196(2)  | 13(1) |  |
| C(10) | 10529(2) | 7693(1) | 5313(2)  | 14(1) |  |
| C(11) | 11436(2) | 8032(1) | 5297(2)  | 19(1) |  |
| C(12) | 11207(2) | 8300(1) | 4239(2)  | 21(1) |  |
| C(13) | 10043(2) | 8250(1) | 3122(2)  | 19(1) |  |
| C(14) | 9123(2)  | 7934(1) | 3122(2)  | 16(1) |  |
| C(15) | 7631(2)  | 6338(1) | 5421(2)  | 13(1) |  |
| C(16) | 7293(2)  | 6715(1) | 4625(2)  | 13(1) |  |
| C(17) | 6027(2)  | 6739(1) | 3628(2)  | 14(1) |  |
| C(18) | 5121(2)  | 6395(1) | 3415(2)  | 15(1) |  |
| C(19) | 5462(2)  | 6017(1) | 4180(2)  | 14(1) |  |

| C(20) | 6713(2)  | 5992(1) | 5175(2)  | 15(1) |
|-------|----------|---------|----------|-------|
| C(21) | 4486(2)  | 5644(1) | 3907(2)  | 14(1) |
| C(22) | 4704(2)  | 5262(1) | 3291(2)  | 14(1) |
| C(23) | 3660(2)  | 4935(1) | 2922(2)  | 14(1) |
| C(24) | 2362(2)  | 5319(1) | 3848(2)  | 15(1) |
| C(25) | 3321(2)  | 5672(1) | 4230(2)  | 14(1) |
| C(26) | 5891(2)  | 5185(1) | 2998(2)  | 18(1) |
| C(27) | 6032(2)  | 4814(1) | 2381(2)  | 21(1) |
| C(28) | 4984(2)  | 4496(1) | 1984(2)  | 21(1) |
| C(29) | 3837(2)  | 4555(1) | 2246(2)  | 18(1) |
| C(30) | 1193(2)  | 5341(1) | 4197(2)  | 19(1) |
| C(31) | 1002(2)  | 5680(1) | 4904(2)  | 22(1) |
| C(32) | 1964(2)  | 6028(1) | 5305(2)  | 22(1) |
| C(33) | 3072(2)  | 6025(1) | 4962(2)  | 17(1) |
| C(34) | 9539(2)  | 7259(1) | 9240(2)  | 20(1) |
| C(35) | 9107(2)  | 7501(1) | 10073(2) | 25(1) |
| C(36) | 8046(2)  | 7791(1) | 9554(2)  | 24(1) |
| C(37) | 7454(2)  | 7833(1) | 8218(2)  | 22(1) |
| C(38) | 7949(2)  | 7580(1) | 7454(2)  | 20(1) |
| C(39) | 9148(2)  | 6355(1) | 2540(2)  | 23(1) |
| N(40) | 10133(2) | 6357(1) | 2048(2)  | 25(1) |
| C(41) | 10101(2) | 6034(1) | 1216(2)  | 24(1) |
| C(42) | 9120(2)  | 5712(1) | 851(2)   | 24(1) |
| C(43) | 8100(2)  | 5722(1) | 1353(2)  | 23(1) |
| C(44) | 8121(2)  | 6051(1) | 2220(2)  | 24(1) |
|       |          |         |          |       |

| Zn(1)-O(1)  | 1.9766(13) |
|-------------|------------|
| Zn(1)-O(2)  | 1.9791(13) |
| Zn(1)-N(1)  | 2.0932(15) |
| Zn(1)-N(2)  | 2.0911(14) |
| Zn(1)-N(3)  | 2.0860(15) |
| O(1)-C(3)   | 1.294(2)   |
| O(2)-C(10)  | 1.304(2)   |
| N(1)-C(1)   | 1.298(2)   |
| N(1)-C(15)  | 1.420(2)   |
| N(2)-C(8)   | 1.299(2)   |
| N(2)-C(16)  | 1.417(2)   |
| N(3)-C(34)  | 1.344(2)   |
| N(3)-C(38)  | 1.340(2)   |
| N(4)-C(23)  | 1.344(2)   |
| N(4)-C(24)  | 1.346(2)   |
| C(1)-H(1)   | 0.9500     |
| C(1)-C(2)   | 1.438(2)   |
| C(2)-C(3)   | 1.432(2)   |
| C(2)-C(7)   | 1.417(2)   |
| C(3)-C(4)   | 1.426(2)   |
| C(4)-H(4)   | 0.9500     |
| C(4)-C(5)   | 1.373(3)   |
| C(5)-H(5)   | 0.9500     |
| C(5)-C(6)   | 1.406(3)   |
| C(6)-H(6)   | 0.9500     |
| C(6)-C(7)   | 1.375(3)   |
| C(7)-H(7)   | 0.9500     |
| C(8)-H(8)   | 0.9500     |
| C(8)-C(9)   | 1.435(2)   |
| C(9)-C(10)  | 1.425(2)   |
| C(9)-C(14)  | 1.415(2)   |
| C(10)-C(11) | 1.418(2)   |

Table A2. Bond lengths [Å] and angles [°] for MMB\_180511\_V\_ZnH2LSal.

| С(11)-Н(11) | 0.9500   |
|-------------|----------|
| C(11)-C(12) | 1.373(3) |
| C(12)-H(12) | 0.9500   |
| C(12)-C(13) | 1.405(3) |
| C(13)-H(13) | 0.9500   |
| C(13)-C(14) | 1.373(3) |
| C(14)-H(14) | 0.9500   |
| C(15)-C(16) | 1.413(2) |
| C(15)-C(20) | 1.396(2) |
| C(16)-C(17) | 1.399(2) |
| С(17)-Н(17) | 0.9500   |
| C(17)-C(18) | 1.384(2) |
| C(18)-H(18) | 0.9500   |
| C(18)-C(19) | 1.399(2) |
| C(19)-C(20) | 1.388(3) |
| C(19)-C(21) | 1.495(2) |
| C(20)-H(20) | 0.9500   |
| C(21)-C(22) | 1.409(2) |
| C(21)-C(25) | 1.407(3) |
| C(22)-C(23) | 1.438(2) |
| C(22)-C(26) | 1.428(3) |
| C(23)-C(29) | 1.428(2) |
| C(24)-C(25) | 1.438(2) |
| C(24)-C(30) | 1.426(3) |
| C(25)-C(33) | 1.427(2) |
| C(26)-H(26) | 0.9500   |
| C(26)-C(27) | 1.358(3) |
| С(27)-Н(27) | 0.9500   |
| C(27)-C(28) | 1.422(3) |
| C(28)-H(28) | 0.9500   |
| C(28)-C(29) | 1.361(3) |
| C(29)-H(29) | 0.9500   |
| C(30)-H(30) | 0.9500   |
| C(30)-C(31) | 1.355(3) |

| C(31)-H(31)     | 0.9500    |
|-----------------|-----------|
| C(31)-C(32)     | 1.427(3)  |
| C(32)-H(32)     | 0.9500    |
| C(32)-C(33)     | 1.359(3)  |
| C(33)-H(33)     | 0.9500    |
| C(34)-H(34)     | 0.9500    |
| C(34)-C(35)     | 1.380(3)  |
| C(35)-H(35)     | 0.9500    |
| C(35)-C(36)     | 1.385(3)  |
| C(36)-H(36)     | 0.9500    |
| C(36)-C(37)     | 1.384(3)  |
| C(37)-H(37)     | 0.9500    |
| C(37)-C(38)     | 1.379(3)  |
| C(38)-H(38)     | 0.9500    |
| C(39)-H(39)     | 0.9500    |
| C(39)-N(40)     | 1.339(3)  |
| C(39)-C(44)     | 1.378(3)  |
| N(40)-C(41)     | 1.339(3)  |
| C(41)-H(41)     | 0.9500    |
| C(41)-C(42)     | 1.383(3)  |
| C(42)-H(42)     | 0.9500    |
| C(42)-C(43)     | 1.382(3)  |
| C(43)-H(43)     | 0.9500    |
| C(43)-C(44)     | 1.381(3)  |
| C(44)-H(44)     | 0.9500    |
| O(1)-Zn(1)-O(2) | 93.46(5)  |
| O(1)-Zn(1)-N(1) | 89.02(5)  |
| O(1)-Zn(1)-N(2) | 157.98(6) |
| O(1)-Zn(1)-N(3) | 98.62(6)  |
| O(2)-Zn(1)-N(1) | 151.70(6) |
| O(2)-Zn(1)-N(2) | 89.29(5)  |
| O(2)-Zn(1)-N(3) | 101.56(6) |
| N(2)-Zn(1)-N(1) | 78.54(6)  |

| N(3)-Zn(1)-N(1)  | 105.92(6)  |
|------------------|------------|
| N(3)-Zn(1)-N(2)  | 102.22(6)  |
| C(3)-O(1)-Zn(1)  | 130.67(12) |
| C(10)-O(2)-Zn(1) | 129.68(11) |
| C(1)-N(1)-Zn(1)  | 125.92(12) |
| C(1)-N(1)-C(15)  | 121.17(15) |
| C(15)-N(1)-Zn(1) | 112.83(11) |
| C(8)-N(2)-Zn(1)  | 126.26(12) |
| C(8)-N(2)-C(16)  | 120.70(15) |
| C(16)-N(2)-Zn(1) | 112.87(11) |
| C(34)-N(3)-Zn(1) | 120.10(13) |
| C(38)-N(3)-Zn(1) | 121.59(12) |
| C(38)-N(3)-C(34) | 118.01(16) |
| C(23)-N(4)-C(24) | 118.12(15) |
| N(1)-C(1)-H(1)   | 117.2      |
| N(1)-C(1)-C(2)   | 125.65(16) |
| C(2)-C(1)-H(1)   | 117.2      |
| C(3)-C(2)-C(1)   | 124.11(16) |
| C(7)-C(2)-C(1)   | 116.11(16) |
| C(7)-C(2)-C(3)   | 119.79(16) |
| O(1)-C(3)-C(2)   | 124.37(16) |
| O(1)-C(3)-C(4)   | 118.85(16) |
| C(4)-C(3)-C(2)   | 116.77(16) |
| C(3)-C(4)-H(4)   | 119.1      |
| C(5)-C(4)-C(3)   | 121.81(17) |
| C(5)-C(4)-H(4)   | 119.1      |
| C(4)-C(5)-H(5)   | 119.5      |
| C(4)-C(5)-C(6)   | 121.10(17) |
| C(6)-C(5)-H(5)   | 119.5      |
| C(5)-C(6)-H(6)   | 120.6      |
| C(7)-C(6)-C(5)   | 118.85(17) |
| C(7)-C(6)-H(6)   | 120.6      |
| C(2)-C(7)-H(7)   | 119.2      |
| C(6)-C(7)-C(2)   | 121.68(17) |

| C(6)-C(7)-H(7)    | 119.2      |
|-------------------|------------|
| N(2)-C(8)-H(8)    | 117.4      |
| N(2)-C(8)-C(9)    | 125.13(16) |
| C(9)-C(8)-H(8)    | 117.4      |
| C(10)-C(9)-C(8)   | 124.62(16) |
| C(14)-C(9)-C(8)   | 115.86(16) |
| C(14)-C(9)-C(10)  | 119.48(16) |
| O(2)-C(10)-C(9)   | 124.71(16) |
| O(2)-C(10)-C(11)  | 118.37(16) |
| C(11)-C(10)-C(9)  | 116.91(16) |
| C(10)-C(11)-H(11) | 118.9      |
| C(12)-C(11)-C(10) | 122.12(17) |
| C(12)-C(11)-H(11) | 118.9      |
| С(11)-С(12)-Н(12) | 119.6      |
| C(11)-C(12)-C(13) | 120.80(17) |
| C(13)-C(12)-H(12) | 119.6      |
| C(12)-C(13)-H(13) | 120.7      |
| C(14)-C(13)-C(12) | 118.53(17) |
| C(14)-C(13)-H(13) | 120.7      |
| C(9)-C(14)-H(14)  | 119.0      |
| C(13)-C(14)-C(9)  | 122.09(17) |
| C(13)-C(14)-H(14) | 119.0      |
| C(16)-C(15)-N(1)  | 116.01(15) |
| C(20)-C(15)-N(1)  | 124.52(16) |
| C(20)-C(15)-C(16) | 119.47(16) |
| C(15)-C(16)-N(2)  | 115.62(15) |
| C(17)-C(16)-N(2)  | 125.14(16) |
| C(17)-C(16)-C(15) | 119.24(16) |
| C(16)-C(17)-H(17) | 119.8      |
| C(18)-C(17)-C(16) | 120.42(16) |
| C(18)-C(17)-H(17) | 119.8      |
| C(17)-C(18)-H(18) | 119.7      |
| C(17)-C(18)-C(19) | 120.61(17) |
| C(19)-C(18)-H(18) | 119.7      |

| C(18)-C(19)-C(21) | 119.79(16) |
|-------------------|------------|
| C(20)-C(19)-C(18) | 119.28(16) |
| C(20)-C(19)-C(21) | 120.92(16) |
| С(15)-С(20)-Н(20) | 119.5      |
| C(19)-C(20)-C(15) | 120.94(16) |
| С(19)-С(20)-Н(20) | 119.5      |
| C(22)-C(21)-C(19) | 120.40(16) |
| C(25)-C(21)-C(19) | 120.69(16) |
|                   |            |
| C(25)-C(21)-C(22) | 118.89(16) |
| C(21)-C(22)-C(23) | 117.90(16) |
| C(21)-C(22)-C(26) | 123.82(17) |
| C(26)-C(22)-C(23) | 118.27(16) |
| N(4)-C(23)-C(22)  | 123.47(16) |
| N(4)-C(23)-C(29)  | 117.84(16) |
|                   |            |
| C(29)-C(23)-C(22) | 118.69(16) |
| N(4)-C(24)-C(25)  | 123.06(17) |
| N(4)-C(24)-C(30)  | 118.34(16) |
| C(30)-C(24)-C(25) | 118.60(16) |
| C(21)-C(25)-C(24) | 118.32(16) |
| C(21)-C(25)-C(33) | 123.14(17) |
| C(33)-C(25)-C(24) | 118.49(17) |
| C(22)-C(26)-H(26) | 119.4      |
| C(27)-C(26)-C(22) | 121.12(18) |
| C(27)-C(26)-H(26) | 119.4      |
| C(26)-C(27)-H(27) | 119.7      |
| C(26)-C(27)-C(28) | 120.66(18) |
| C(28)-C(27)-H(27) | 119.7      |
| C(27)-C(28)-H(28) | 119.9      |
| C(29)-C(28)-C(27) | 120.25(17) |
| C(29)-C(28)-H(28) | 119.9      |
| C(23)-C(29)-H(29) | 119.5      |
| C(28)-C(29)-C(23) | 120.97(17) |

| C(28)-C(29)-H(29) | 119.5      |
|-------------------|------------|
| C(24)-C(30)-H(30) | 119.5      |
| C(31)-C(30)-C(24) | 120.99(18) |
| C(31)-C(30)-H(30) | 119.5      |
| C(30)-C(31)-H(31) | 119.7      |
| C(30)-C(31)-C(32) | 120.58(18) |
| C(32)-C(31)-H(31) | 119.7      |
| С(31)-С(32)-Н(32) | 119.9      |
| C(33)-C(32)-C(31) | 120.25(18) |
| С(33)-С(32)-Н(32) | 119.9      |
| С(25)-С(33)-Н(33) | 119.5      |
| C(32)-C(33)-C(25) | 121.05(17) |
| С(32)-С(33)-Н(33) | 119.5      |
| N(3)-C(34)-H(34)  | 118.8      |
| N(3)-C(34)-C(35)  | 122.39(18) |
| C(35)-C(34)-H(34) | 118.8      |
| С(34)-С(35)-Н(35) | 120.6      |
| C(34)-C(35)-C(36) | 118.83(19) |
| C(36)-C(35)-H(35) | 120.6      |
| C(35)-C(36)-H(36) | 120.3      |
| C(37)-C(36)-C(35) | 119.37(18) |
| C(37)-C(36)-H(36) | 120.3      |
| С(36)-С(37)-Н(37) | 121.0      |
| C(38)-C(37)-C(36) | 118.08(19) |
| С(38)-С(37)-Н(37) | 121.0      |
| N(3)-C(38)-C(37)  | 123.32(18) |
| N(3)-C(38)-H(38)  | 118.3      |
| C(37)-C(38)-H(38) | 118.3      |
| N(40)-C(39)-H(39) | 118.0      |
| N(40)-C(39)-C(44) | 124.02(18) |
| C(44)-C(39)-H(39) | 118.0      |
| C(39)-N(40)-C(41) | 116.32(17) |
| N(40)-C(41)-H(41) | 118.2      |
| N(40)-C(41)-C(42) | 123.66(19) |

| C(42)-C(41)-H(41) | 118.2      |
|-------------------|------------|
| C(41)-C(42)-H(42) | 120.6      |
| C(43)-C(42)-C(41) | 118.88(18) |
| C(43)-C(42)-H(42) | 120.6      |
| C(42)-C(43)-H(43) | 120.8      |
| C(44)-C(43)-C(42) | 118.31(19) |
| C(44)-C(43)-H(43) | 120.8      |
| C(39)-C(44)-C(43) | 118.77(19) |
| C(39)-C(44)-H(44) | 120.6      |
| C(43)-C(44)-H(44) | 120.6      |
|                   |            |

Symmetry transformations used to generate equivalent atoms:

Table A3.Anisotropic displacement parameters $(Å^2 \times 10^3)$  forMMB\_180511\_V\_ZnH2LSal.The anisotropic displacement factor exponenttakes the form:  $-2\Box^2[h^2 a^{*2}U^{11} + ... + 2h k a^* b^* U^{12}]$ 

|       | U11   | U22   | U33   | U23   | U13  | U12   |  |
|-------|-------|-------|-------|-------|------|-------|--|
| Zn(1) | 14(1) | 11(1) | 11(1) | 1(1)  | 2(1) | 0(1)  |  |
| O(1)  | 17(1) | 14(1) | 19(1) | 5(1)  | 1(1) | -1(1) |  |
| O(2)  | 17(1) | 18(1) | 13(1) | 4(1)  | 0(1) | -4(1) |  |
| N(1)  | 14(1) | 12(1) | 12(1) | 1(1)  | 4(1) | 0(1)  |  |
| N(2)  | 14(1) | 12(1) | 11(1) | -1(1) | 3(1) | 0(1)  |  |
| N(3)  | 17(1) | 16(1) | 15(1) | -1(1) | 6(1) | -2(1) |  |
| N(4)  | 17(1) | 13(1) | 15(1) | 1(1)  | 4(1) | -1(1) |  |
| C(1)  | 17(1) | 12(1) | 14(1) | 0(1)  | 6(1) | -1(1) |  |
| C(2)  | 16(1) | 15(1) | 11(1) | 1(1)  | 6(1) | 3(1)  |  |
| C(3)  | 15(1) | 17(1) | 12(1) | 2(1)  | 6(1) | 3(1)  |  |
| C(4)  | 17(1) | 19(1) | 14(1) | 1(1)  | 4(1) | 0(1)  |  |
| C(5)  | 16(1) | 24(1) | 13(1) | 2(1)  | 3(1) | 5(1)  |  |
| C(6)  | 24(1) | 16(1) | 16(1) | 4(1)  | 8(1) | 5(1)  |  |
| C(7)  | 20(1) | 14(1) | 15(1) | 0(1)  | 7(1) | 1(1)  |  |
| C(8)  | 13(1) | 14(1) | 10(1) | -2(1) | 2(1) | 2(1)  |  |
| C(9)  | 15(1) | 13(1) | 12(1) | -1(1) | 5(1) | 1(1)  |  |
| C(10) | 16(1) | 13(1) | 13(1) | -1(1) | 4(1) | 1(1)  |  |
| C(11) | 19(1) | 19(1) | 17(1) | 0(1)  | 2(1) | -5(1) |  |
| C(12) | 22(1) | 17(1) | 23(1) | 1(1)  | 8(1) | -6(1) |  |
| C(13) | 24(1) | 17(1) | 16(1) | 4(1)  | 7(1) | -1(1) |  |
| C(14) | 19(1) | 16(1) | 13(1) | 0(1)  | 4(1) | 1(1)  |  |
| C(15) | 14(1) | 15(1) | 11(1) | -2(1) | 4(1) | 1(1)  |  |
| C(16) | 15(1) | 12(1) | 13(1) | -2(1) | 6(1) | 0(1)  |  |
| C(17) | 17(1) | 12(1) | 13(1) | 1(1)  | 4(1) | 2(1)  |  |
| C(18) | 13(1) | 15(1) | 14(1) | -2(1) | 2(1) | 1(1)  |  |
| C(19) | 15(1) | 14(1) | 15(1) | -2(1) | 6(1) | 0(1)  |  |
| C(20) | 18(1) | 13(1) | 13(1) | 1(1)  | 6(1) | -1(1) |  |

| C(21) | 15(1) | 14(1) | 11(1) | 3(1)  | 2(1)  | 1(1)  |
|-------|-------|-------|-------|-------|-------|-------|
| C(22) | 16(1) | 14(1) | 10(1) | 4(1)  | 4(1)  | 2(1)  |
| C(23) | 16(1) | 14(1) | 11(1) | 3(1)  | 3(1)  | 0(1)  |
| C(24) | 16(1) | 13(1) | 13(1) | 3(1)  | 3(1)  | 0(1)  |
| C(25) | 16(1) | 13(1) | 12(1) | 1(1)  | 3(1)  | 0(1)  |
| C(26) | 19(1) | 17(1) | 19(1) | 1(1)  | 8(1)  | -2(1) |
| C(27) | 24(1) | 20(1) | 22(1) | 1(1)  | 13(1) | 3(1)  |
| C(28) | 31(1) | 14(1) | 20(1) | -1(1) | 12(1) | 3(1)  |
| C(29) | 23(1) | 14(1) | 16(1) | 0(1)  | 7(1)  | -3(1) |
| C(30) | 18(1) | 18(1) | 22(1) | 2(1)  | 8(1)  | -2(1) |
| C(31) | 19(1) | 25(1) | 24(1) | 2(1)  | 13(1) | 2(1)  |
| C(32) | 26(1) | 19(1) | 21(1) | -2(1) | 11(1) | 3(1)  |
| C(33) | 21(1) | 14(1) | 16(1) | -1(1) | 6(1)  | -1(1) |
| C(34) | 23(1) | 21(1) | 16(1) | 2(1)  | 5(1)  | 1(1)  |
| C(35) | 32(1) | 27(1) | 17(1) | -1(1) | 10(1) | 1(1)  |
| C(36) | 31(1) | 21(1) | 26(1) | -4(1) | 17(1) | -1(1) |
| C(37) | 22(1) | 19(1) | 28(1) | 1(1)  | 10(1) | 3(1)  |
| C(38) | 20(1) | 21(1) | 18(1) | 1(1)  | 5(1)  | 1(1)  |
| C(39) | 28(1) | 20(1) | 23(1) | -2(1) | 9(1)  | 5(1)  |
| N(40) | 26(1) | 24(1) | 26(1) | -3(1) | 11(1) | -3(1) |
| C(41) | 26(1) | 26(1) | 26(1) | -1(1) | 14(1) | -1(1) |
| C(42) | 29(1) | 21(1) | 23(1) | -4(1) | 12(1) | -1(1) |
| C(43) | 24(1) | 20(1) | 26(1) | 1(1)  | 9(1)  | -3(1) |
| C(44) | 25(1) | 23(1) | 27(1) | 4(1)  | 15(1) | 5(1)  |
|       |       |       |       |       |       |       |

|       | Х     | У    | Z     | U(eq) |
|-------|-------|------|-------|-------|
|       |       |      |       |       |
| H(1)  | 8872  | 5736 | 6896  | 17    |
| H(4)  | 13505 | 6461 | 9940  | 21    |
| H(5)  | 13985 | 5779 | 10886 | 22    |
| H(6)  | 12435 | 5198 | 10166 | 22    |
| H(7)  | 10408 | 5313 | 8458  | 20    |
| H(8)  | 7547  | 7330 | 3247  | 15    |
| H(11) | 12228 | 8076 | 6042  | 23    |
| H(12) | 11844 | 8522 | 4262  | 25    |
| H(13) | 9894  | 8432 | 2384  | 23    |
| H(14) | 8325  | 7903 | 2376  | 20    |
| H(17) | 5787  | 6992 | 3095  | 17    |
| H(18) | 4260  | 6417 | 2743  | 18    |
| H(20) | 6949  | 5736 | 5696  | 18    |
| H(26) | 6593  | 5397 | 3239  | 22    |
| H(27) | 6838  | 4766 | 2213  | 25    |
| H(28) | 5085  | 4241 | 1533  | 25    |
| H(29) | 3143  | 4340 | 1976  | 21    |
| H(30) | 538   | 5114 | 3930  | 23    |
| H(31) | 222   | 5687 | 5134  | 26    |
| H(32) | 1829  | 6261 | 5814  | 26    |
| H(33) | 3692  | 6262 | 5213  | 21    |
| H(34) | 10265 | 7059 | 9596  | 24    |
| H(35) | 9531  | 7470 | 10988 | 30    |
| H(36) | 7726  | 7960 | 10108 | 29    |
| H(37) | 6728  | 8031 | 7838  | 27    |
| H(38) | 7546  | 7608 | 6537  | 24    |
| H(39) | 9159  | 6577 | 3147  | 28    |

Table A4. Hydrogen coordinates (×  $10^4$ ) and isotropic displacement parameters (Å<sup>2</sup> ×  $10^3$ ) for MMB\_180511\_V\_ZnH2LSal.

| H(41) | 10791 | 6025 | 856  | 29 |  |
|-------|-------|------|------|----|--|
| H(42) | 9147  | 5487 | 265  | 28 |  |
| H(43) | 7402  | 5509 | 1107 | 28 |  |
| H(44) | 7439  | 6067 | 2589 | 28 |  |
|       |       |      |      |    |  |

| 3.2(3)      |
|-------------|
|             |
| -177.12(12) |
| -6.3(3)     |
| 174.78(13)  |
| -3.7(3)     |
| 12.68(18)   |
| -167.15(14) |
| 0.3(2)      |
| -16.69(18)  |
| 163.95(14)  |
| 173.84(15)  |
| -173.91(15) |
| 179.27(17)  |
| 176.23(18)  |
| 0.0(3)      |
| 179.91(17)  |
| 2.6(2)      |
| -177.96(15) |
| 178.26(16)  |
| 1.7(3)      |
| 179.22(16)  |
| 178.62(16)  |
| 0.3(3)      |
| -178.13(17) |
| -1.0(3)     |
| -178.48(16) |
| 177.84(17)  |
| -170.30(16) |
| 9.9(3)      |
| 0.5(3)      |
| -179.19(16) |
| 180.00(17)  |
|             |

| Table A5: | Torsion | angles [° | ] for | MMB | 180511 | V | ZnH2LSal. |
|-----------|---------|-----------|-------|-----|--------|---|-----------|
|           |         |           |       |     |        |   |           |

| C(2)-C(3)-C(4)-C(5)     | -1.0(3)     |
|-------------------------|-------------|
| C(3)-C(2)-C(7)-C(6)     | -0.1(3)     |
| C(3)-C(4)-C(5)-C(6)     | 0.3(3)      |
| C(4)-C(5)-C(6)-C(7)     | 0.5(3)      |
| C(5)-C(6)-C(7)-C(2)     | -0.7(3)     |
| C(7)-C(2)-C(3)-O(1)     | -179.41(16) |
| C(7)-C(2)-C(3)-C(4)     | 0.9(2)      |
| C(8)-N(2)-C(16)-C(15)   | 158.93(16)  |
| C(8)-N(2)-C(16)-C(17)   | -20.4(3)    |
| C(8)-C(9)-C(10)-O(2)    | 1.3(3)      |
| C(8)-C(9)-C(10)-C(11)   | -179.75(17) |
| C(8)-C(9)-C(14)-C(13)   | -178.55(17) |
| C(9)-C(10)-C(11)-C(12)  | -2.7(3)     |
| C(10)-C(9)-C(14)-C(13)  | -0.9(3)     |
| C(10)-C(11)-C(12)-C(13) | 0.7(3)      |
| C(11)-C(12)-C(13)-C(14) | 1.4(3)      |
| C(12)-C(13)-C(14)-C(9)  | -1.2(3)     |
| C(14)-C(9)-C(10)-O(2)   | -176.10(17) |
| C(14)-C(9)-C(10)-C(11)  | 2.8(2)      |
| C(15)-N(1)-C(1)-C(2)    | 179.73(16)  |
| C(15)-C(16)-C(17)-C(18) | -0.7(3)     |
| C(16)-N(2)-C(8)-C(9)    | -174.71(16) |
| C(16)-C(15)-C(20)-C(19) | -1.6(3)     |
| C(16)-C(17)-C(18)-C(19) | -0.8(3)     |
| C(17)-C(18)-C(19)-C(20) | 1.1(3)      |
| C(17)-C(18)-C(19)-C(21) | -178.03(16) |
| C(18)-C(19)-C(20)-C(15) | 0.1(3)      |
| C(18)-C(19)-C(21)-C(22) | 104.9(2)    |
| C(18)-C(19)-C(21)-C(25) | -73.5(2)    |
| C(19)-C(21)-C(22)-C(23) | -173.16(15) |
| C(19)-C(21)-C(22)-C(26) | 5.9(3)      |
| C(19)-C(21)-C(25)-C(24) | 174.91(15)  |
| C(19)-C(21)-C(25)-C(33) | -7.7(3)     |
| C(20)-C(15)-C(16)-N(2)  | -177.52(15) |

| C(20)-C(15)-C(16)-C(17) | 1.9(3)      |
|-------------------------|-------------|
| C(20)-C(19)-C(21)-C(22) | -74.2(2)    |
| C(20)-C(19)-C(21)-C(25) | 107.3(2)    |
| C(21)-C(19)-C(20)-C(15) | 179.21(16)  |
| C(21)-C(22)-C(23)-N(4)  | -2.9(3)     |
| C(21)-C(22)-C(23)-C(29) | 177.30(16)  |
| C(21)-C(22)-C(26)-C(27) | -178.76(17) |
| C(21)-C(25)-C(33)-C(32) | -176.72(18) |
| C(22)-C(21)-C(25)-C(24) | -3.5(2)     |
| C(22)-C(21)-C(25)-C(33) | 173.88(16)  |
| C(22)-C(23)-C(29)-C(28) | 1.7(3)      |
| C(22)-C(26)-C(27)-C(28) | 1.4(3)      |
| C(23)-N(4)-C(24)-C(25)  | 3.5(3)      |
| C(23)-N(4)-C(24)-C(30)  | -176.13(16) |
| C(23)-C(22)-C(26)-C(27) | 0.3(3)      |
| C(24)-N(4)-C(23)-C(22)  | -1.5(3)     |
| C(24)-N(4)-C(23)-C(29)  | 178.31(16)  |
| C(24)-C(25)-C(33)-C(32) | 0.7(3)      |
| C(24)-C(30)-C(31)-C(32) | 0.6(3)      |
| C(25)-C(21)-C(22)-C(23) | 5.3(2)      |
| C(25)-C(21)-C(22)-C(26) | -175.61(16) |
| C(25)-C(24)-C(30)-C(31) | -1.8(3)     |
| C(26)-C(22)-C(23)-N(4)  | 177.96(16)  |
| C(26)-C(22)-C(23)-C(29) | -1.9(2)     |
| C(26)-C(27)-C(28)-C(29) | -1.6(3)     |
| C(27)-C(28)-C(29)-C(23) | 0.0(3)      |
| C(30)-C(24)-C(25)-C(21) | 178.64(16)  |
| C(30)-C(24)-C(25)-C(33) | 1.1(2)      |
| C(30)-C(31)-C(32)-C(33) | 1.2(3)      |
| C(31)-C(32)-C(33)-C(25) | -1.8(3)     |
| C(34)-N(3)-C(38)-C(37)  | -0.3(3)     |
| C(34)-C(35)-C(36)-C(37) | -0.5(3)     |
| C(35)-C(36)-C(37)-C(38) | 0.4(3)      |
| C(36)-C(37)-C(38)-N(3)  | 0.0(3)      |

| C(38)-N(3)-C(34)-C(35)  | 0.1(3)  |
|-------------------------|---------|
| C(39)-N(40)-C(41)-C(42) | 0.5(3)  |
| N(40)-C(39)-C(44)-C(43) | 0.9(3)  |
| N(40)-C(41)-C(42)-C(43) | 0.8(3)  |
| C(41)-C(42)-C(43)-C(44) | -1.2(3) |
| C(42)-C(43)-C(44)-C(39) | 0.5(3)  |
| C(44)-C(39)-N(40)-C(41) | -1.3(3) |
|                         |         |

Symmetry transformations used to generate equivalent atoms: