New journal of chemistry

# Fabrication of sensitive silver-decorated cotton swabs for SERS quantitative detection of mixed pesticide residues in bitter gourds

Lili Kong,<sup>a</sup> Meizhen Huang,\*<sup>ab</sup> Jie Chen <sup>a</sup> and Mengshi Lin<sup>c</sup>

- a. Department of instrument Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
  Email: <u>mzhuang@sjtu.edu.cn</u>
- b. Shanghai Research Center of Engineering and Technology for Inteligent Diaginosis and Treatment Instrumentation, Shanghai Jiao Tong University, Shanghai 200240, China
- Food Science Program, Division of Food Systems & Bioengineering, University of Missouri, Columbia, Mo
  65211, USA

## List of supplementary material

SI-1 Estimated amount of AgNPs coated on a cotton swab

SI-2 Mechanism of NaCl facilitated decoration process

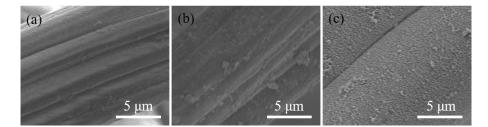
**Figure S1** (a) SEM images of blank cotton swab, (b) silver-decorated cotton swabs without NaCl treatment and (c) with NaCl treatment.

**Figure S2** (a) Predicted concentrations compared with actual concentrations of TBZ and thiram in bitter gourds using ULR models and (b) PCR models.

**Table S1** Vibration assignments of R6G**Table S2** Vibration assignments of TBZ and thiram

References S1~S6

#### SI-1 Estimated amount of AgNPs coated on a cotton swab


The amount of AgNPs on a cotton swab  $(^{m_{Ag}})$  could be calculated according to the following formula:

$$m_{Ag} = C_{AgNO_3} \cdot V_{AgNO_3} \cdot M_{Ag} \cdot \frac{0.75 \ ml}{100 \ ml}$$

Where  $C_{AgNO_3}$  is the molarity of AgNO<sub>3</sub>,  $V_{AgNO_3}$  is the volume of AgNO<sub>3</sub> solution, and  $M_{Ag}$  is the relative molecular mass of Ag.  $m_{Ag}$  is calculated to be  $8.09 \times 10^{-2}$  mg. Actually, considering the loss of reduction efficiency and modification efficiency, the amount of AgNPs attached on a cotton swab is less than  $8.09 \times 10^{-2}$  mg.

#### SI-2 Mechanism of NaCl facilitated decoration process

The main component of cotton swab is cellulose, which contains abundant uronic acid groups, making cotton swab negatively charged.<sup>S1</sup> While AgNPs are also negatively charged.<sup>S2</sup> The presence of electrostatic repulsion makes it difficult to decorate AgNPs on cotton swabs by immersion adsorption. The introduction of NaCl can break the electrostatic repulsion and accelerate the decoration process, because NaCl has a strong attraction on AgNPs.<sup>S3</sup>



**Figure S1** (a) SEM images of blank cotton swab, (b) silver-decorated cotton swabs without NaCl treatment and (c) with NaCl treatment.

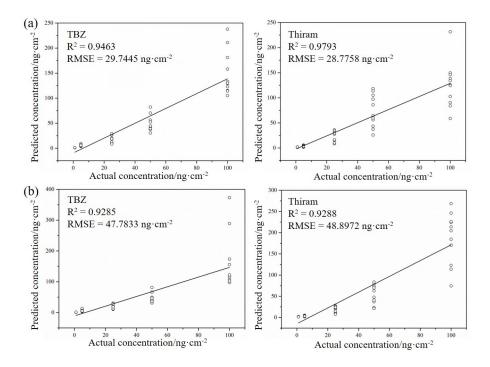



Figure S2 (a) Predicted concentrations compared with actual concentrations of TBZ and thiram in

bitter gourds using ULR models and (b) PCR models.

Table S1 Vibration assignments of R6G<sup>S4</sup>

| Raman shift/cm <sup>-1</sup> | hift/cm <sup>-1</sup> Vibrational mode<br>C–H out-of-plane bending |  |
|------------------------------|--------------------------------------------------------------------|--|
| 771                          |                                                                    |  |
| 1182                         | C–H in-plane bending                                               |  |
| 1311                         | N–H in plane bending                                               |  |
| 1362, 1511                   | Aromatic C-C stretching                                            |  |

Table S2 Vibration assignments of TBZ and thiram<sup>S5, S6</sup>

| Raman shift/cm <sup>-1</sup> | Vibrational mode                      | Material assignment |
|------------------------------|---------------------------------------|---------------------|
| 783                          | Out of plane bending of C-H           | TBZ                 |
| 884, 900                     | Out of plane bending of C-H and C-C-C | TBZ                 |
|                              | deformable vibration                  |                     |
| 1010                         | Out of plane bending of C-C-C         | TBZ                 |
| 561                          | S-S stretching                        | Thiram              |
| 925                          | C=S stretching                        | Thiram              |
| 1147                         | Methyl vibration                      | Thiram              |
| 1381                         | Methyl or C-N stretching              | Thiram              |
| 1507                         | Methyl vibration                      | Thiram              |

### References

[S1] Y. V. Sood, R. Tyagi, S. Tyagi, P. C. Pande and R. Tondon, J. Sci. Ind. Res. India, 2010, 69, 300-304.

- [S2] P. Liou, F. X. Nayigiziki, F. Kong, A. Mustapha and M. Lin, *Carbohyd. Polym.*, 2017, 157, 643-650.
- [S3] M. Kim and K. Itoh, J. Phys. Chem., 1987, 91, 126-131.
- [S4] Y. Wang, S. Ma, Q. Yang and X. Li, Appl. Surf. Sci., 2012, 258, 5881-5885.
- [S5] K. Wang, X. Zhang, C. Niu and Y. Wang, ACS Appl. Mater. Inter., 2014, 6, 1272-1278.
- [S6] P. Nie, T. Dong, S. Xiao, L. Lin, Y. He and F. Qu, *Molecules*, 2018, 23, 1949.