Supporting Information

Synthesis of two New Copper-Sandwiched Polyoxotungstates and their Catalytic Activity of Hydrogen Evolution Influenced by Nuclear Number

Zhao-Min Su, Mo Zhang, Qingqing An, Dan Qin, Hai-Lou Li, Hongjin Lv, Zhiyu Jia*, Qiang Zhang* and Guo-Yu Yang*

MOE Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China

E-Mail: jzy@bit.edu.cn, zhangqiang6299@bit.edu.cn, ygy@bit.edu.cn

	1	2
formula	$[Cu(dap)_2]_2[{Cu_8(dap)_4(H_2O)_2}]_2$	$[Cu(dap)_2(H_2O)]_2[Cu(dap)_2]_2[\{Cu_6(dap)_2\}(SiW_9)]_2[Cu(dap)_2]_2[[Cu_6(dap)_2]_2]_2[Cu_6(dap)_2]_2]_2[Cu_6(dap)_2]_2[Cu$
	}(SiW ₉ O ₃₄) ₂]·7H ₂ O	O ₃₄) ₂]·8H ₂ O
Formula weight	5743.74	5938.27
crystal size[mm ³]	0.18×0.10×0.08	0.20×0.12×0.10
Crystal color	dark blue	dark green
crystal system	monoclinic	triclinic
space group	P 21/c	P -1
a [Å]	13.6402(10)	12.4480(5)
b [Å]	31.703(2)	14.3192(5)
c [Å]	12.2361(9)	17.1822(7)
α [°]	90	98.959(3)
β [°]	114.901(2)	110.639(4)
γ [°]	90	104.727(3)
Volume [Å ³]	4799.5(6)	2668.2(2)
Ζ	2	1
Dcalc. [mg·m ⁻³]	3.974	3.696
μ[mm ⁻¹]	32.365	24.32
F_{000}	5128.0	2674.0
θ range[°]	3.534 to 58.994	6.766 to 53
Reflections	63281	22326
collected		
Independent	13332	11032
reflections		
<i>R</i> (int)	0.0481	0.0537
Completeness	0.998	0.997
Data/restraints/pa	13332/51/641	11032/132/702
rameters		
Goodness-of-fit	1.209	1.067
on F^2		
Final R indices	$R_1 = 0.0466, wR_2 = 0.0927$	$R_1 = 0.0425, wR_2 = 0.0942$
[I>2sigma(I)]		
R indices (all	$R_1 = 0.0584, wR_2 = 0.0965$	$R_1 = 0.0594, wR_2 = 0.1052$
data)		
Largest diff. peak	2.32/-3.19	4.45/-3.62
and hole/e.Å ⁻³		

 Table S1. Crystallographic data and structure refinements for 1 and 2.

 Table S2. Bond valence sum (BVS) calculations of all Cu and W atoms in 1 and 2.

1-BVS		2-BVS	
Cul	2.11	Cul	2.16
Cu2	2.12	Cu2	2.17

Cu3	2.00	Cu3	2.19
Cu4	2.15	Cu4	2.24
Cu5	2.14	Cu5	2.47
W1	6.19	Cu6	2.01
W2	6.05	W1	6.24
W3	6.20	W2	6.28
W4	6.14	W3	6.09
W5	6.19	W4	6.13
W6	6.10	W5	6.23
W7	6.01	W6	6.13
W8	6.09	W7	6.10
W9	6.08	W8	6.20
		W9	5.99

Table S3. Quantum yields of H_2 production for 1 and 2 under different conditions in 10 hours.

	QY (%)					
Compound 1	$[Ir(ppy)_2(dtbbpy)][PF_6] (0.2 mM)$	Catalyst 1 (mg)	1	0.016		
	TEOA (0.25 M)		2	0.051		
			4	0.093		
	Catalyst 1 (2 mg)	[Ir(ppy) ₂ (dtbbpy)][PF ₆]	0.1	0.021		
	TEOA (0.25 M)	(mM)	0.4	0.057		
	Catalyst 1 (2 mg)	TEOA (M)	0.05	0.022		
	$[Ir(ppy)_2(dtbbpy)][PF_6] (0.2 mM)$		0.15	0.035		
Compound 2	$[Ir(ppy)_2(dtbbpy)][PF_6] (0.2 mM)$	Catalyst 2 (mg)	1	0.028		
	TEOA (0.25 M)		2	0.036		
			4	0.083		
	Catalyst 2 (2mg)	[Ir(ppy) ₂ (dtbbpy)][PF ₆]	0.1	0.011		
	TEOA (0.25 M)	(mM)	0.4	0.053		
	Catalyst 2 (2mg)	TEOA(M)	0.05	0.015		
	$[Ir(ppy)_2(dtbbpy)][PF_6] (0.2 mM)$		0.15	0.025		

Table S4. Elemental analysis for 1 and 2.

Elemental analysis		calcd (%)	Found (%)
Compound 1	С	5.11	5.35
	Ν	3.97	4.21
Compound 2	С	6.16	5.82
	N	4.79	4.75

1		2		
Bo	nd lengths (Å)	Bo	nd lengths (Å)	
Cu1-N	1.965(13)-1.971(11)	Cu1-O	1.922(7)-2.318(6)	
Cu1-O	1.976(8)-2.427(8)	Cu2-O	1.920(7)-2.300(7)	
Cu2-O	1.939(8)-2.437(11)	Cu3-N	1.960(9)-1.969(9)	
Cu3-N	1.983(15)-2.029(14)	Cu3-O	1.991(7)-2.339(7)	
Cu3-O	1.993(8)-2.359(8)	Cu4-N	1.979(11)-	
			2.016(12)	
Cu4-O	1.953(7)-2.358(7)	Cu4-O	2.489 (4)-2.583 (3)	
Cu5-N	1.972(18)-2.022(18)	Cu5-N	1.89(2)-1.997(19)	
Si1-O	1.620(8)- 1.642(8)	Cu5-O	3.137(2)-3.147(3)	
W1-O	1.721(8)- 2.381(7)	Cu6-N	2.007(11)-	
			2.015(12)	
W2-O	1.707(9)-2.425(7)	Cu6-O	3.232(6)	
W3-0	1.708(9)- 2.386(7)	Si1-O	1.625(7)-1.635(7)	
W4-0	1.725(8)-2.348(7)	W1-0	1.705(8)-2.391(7)	
W5-0	1.706(8)-2.373(7)	W2-O	1.713(7)-2.391(7)	
W6-O	1.727(9)-2.289(7)	W3-O	1.728(8)- 2.410(7)	
W7-O	1.724(9)-2.368(7)	W4-0	1.718(7)-2.363(6)	
W8-0	1.725(9)- 2.355(7)	W5-0	1.715(7)-2.306(7)	
W9-O	1.710(8)-2.316(7)	W6-O	1.715(7)-2.376(7)	
		W7-O	1.715(7)-2.420(7)	
		W8-0	1.718(7)-2.285(7)	
		W9-0	1.730(7)-2.351(6)	
В	ond angles(°)	В	ond angles(°)	
N-Cu1-N	84.3(6)	O-Cu1-O	75.0(3)-87.3(3)	
N-Cu1-O	91.6(5)-174.2(5)	O-Cu2-O	83.1(3)-176.2(3)	
O-Cu1-O	72.6(3)-90.6(3)	N-Cu3-N	84.2(2)	
O-Cu2-O	84.8(3)-173.6(4)	N-Cu3-O	91.9(0)-171.0(2)	
N-Cu3-N	85.9(6)	O-Cu3-O	85.4(3)-175.6(3)	
N-Cu3-O	89.3(5) -168.6(5)	N-Cu4-N	83.7(6)-178.3(5)	
O-Cu3-O	75.5(3)-86.7(3)	N-Cu4-O	87.2(2)-95.8(1)	
O-Cu4-O	83.4(3)-176.1(3)	O-Cu4-O	175.5(8)	
N-Cu5-N	82.3(7)-176.7(7)	N-Cu5-N	85.7(8)-180.0	
N-Cu5-O	77.9(8)-100.3(8)	N-Cu5-O	66.7(4)-113.2(6)	

Table S5. Major bond lengths and bond angles for POM 1 and 2.

O-Cu5-O	173.0(0)	O-Cu5-O	180.0
O-Si1-O	107.6(4)-112.6(4)	N-Cu6-O	79.6(5)-100.3(4)
O-W1-O	73.1(3)-170.3(4)	O-Cu6-O	180.0
O-W2-O	72.5(3)-172.1(4)	O-Si1-O	107.8(4)- 111.4(4)
O-W3-O	74.9(3)-170.9(4)	O-W1-O	72.4(3)-169.2(3)
O-W4-O	72.6(3)-167.6(4)	O-W2-O	73.1(3) -172.0(3)
O-W5-O	73.0(3)-168.4(4)	O-W3-O	73.1(3)-171.2(3)
O-W6-O	74.0(3)-170.7(4)	0-W4-0	74.6(3)-172.8(3)
O-W7-O	74.1(3)-173.3(4)	O-W5-O	73.6(3)- 169.7(3)
O-W8-O	74.4(3)-170.0(4)	O-W6-O	71.8(3)-166.9(3)
O-W9-O	73.7(3)-169.7(4)	O-W7-O	71.3(3)-167.3(3)
		0-W8-0	72.7(3)-168.4(3)
		O-W9-O	72.8(3)-166.9(3)

The description for the DFT computational model.

The atomic valence electronic configuration considered as H:1s¹, C: $2s^22p^2$, N: $2s^22p^3$, O: $2s^22p^4$, Si: $3s^23p^2$, Cu: $3d^{10}4s^1$ and W: $5d^46^2$.

Model: A single molecule of **1** and **2** is placed in a box with $25 \times 25 \times 25$ Å to avoid periodic interactions. To meet the experimental configuration, the experimental structure of **1** and **2** were employed to investigate the electronic structure rather than the geometric optimization by DFT. The total system is net neutral.

The charge, spin and fractional coordination (including the information of crystal lattice) are shown in Table S6-S11.

Atom	S	р	d	total
1C	0.873	1.572	0	2.445
2C	0.843	1.797	0	2.64
3C	0.86	1.567	0	2.426
4C	0.854	1.56	0	2.414
5C	0.844	1.615	0	2.458
6C	0.844	1.749	0	2.593
7C	0.873	1.572	0	2.445
8C	0.843	1.797	0	2.64
9C	0.859	1.567	0	2.426

Table S6. The charge of 1.

10C	0.853	1.561	0	2.414
11C	0.844	1.615	0	2.459
12C	0.844	1.75	0	2.594
13N	1.273	2.377	0	3.65
14N	1.314	2.193	0	3.507
15N	1.318	2.167	0	3.485
16N	1.285	2.263	0	3.547
17N	1.273	2.376	0	3.649
18N	1.314	2.194	0	3.508
19N	1.318	2.166	0	3.484
20N	1.284	2.263	0	3.548
210	1.586	3.566	0	5.152
220	1.602	3.491	0	5.093
230	1.597	3.452	0	5.049
240	1.581	3.6	0	5.18
250	1.598	3.463	0	5.062
260	1.582	3.608	0	5.19
270	1.595	3.623	0	5.218
280	1.597	3.503	0	5.1
290	1.601	3.482	0	5.084
300	1.597	3.526	0	5.123
310	1.595	3.518	0	5.113
320	1.603	3.488	0	5.091
330	1.602	3.486	0	5.088
340	1.596	3.458	0	5.055
350	1.601	3.489	0	5.09
360	1.607	3.444	0	5.051
370	1.603	3.477	0	5.08
380	1.6	3.457	0	5.056
390	1.594	3.52	0	5.115
400	1.602	3.485	0	5.087
410	1.601	3.491	0	5.093
420	1.58	3.603	0	5.183
430	1.595	3.603	0	5.198
440	1.599	3.472	0	5.071
450	1.593	3.626	0	5.219
460	1.605	3.484	0	5.089
470	1.589	3.651	0	5.24
480	1.595	3.627	0	5.221
490	1.598	3.617	0	5.215
500	1.595	3.512	0	5.107
510	1.596	3.514	0	5.11
520	1.584	3.674	0	5.258

530	1.591	3.651	0	5.242
540	1.619	3.416	0	5.035
550	1.586	3.566	0	5.151
560	1.603	3.486	0	5.089
570	1.596	3.452	0	5.049
580	1.581	3.599	0	5.18
590	1.598	3.464	0	5.062
600	1.583	3.608	0	5.191
610	1.595	3.622	0	5.216
620	1.596	3.515	0	5.111
630	1.601	3.482	0	5.084
640	1.597	3.518	0	5.116
650	1.595	3.518	0	5.113
660	1.603	3.489	0	5.092
670	1.603	3.484	0	5.087
680	1.597	3.456	0	5.053
690	1.601	3.489	0	5.09
700	1.607	3.443	0	5.05
710	1.603	3.477	0	5.08
720	1.599	3.458	0	5.057
730	1.595	3.52	0	5.114
740	1.601	3.484	0	5.085
750	1.603	3.491	0	5.094
760	1.58	3.602	0	5.182
770	1.595	3.603	0	5.198
780	1.599	3.472	0	5.071
790	1.593	3.626	0	5.219
800	1.604	3.486	0	5.09
810	1.586	3.656	0	5.242
820	1.594	3.629	0	5.223
830	1.598	3.616	0	5.214
840	1.595	3.513	0	5.108
850	1.596	3.511	0	5.107
860	1.585	3.673	0	5.258
870	1.589	3.655	0	5.245
880	1.619	3.417	0	5.035
89Si	0.672	1.011	0	1.682
90Si	0.672	1.011	0	1.682
91Cu	0.324	0.37	9.212	9.906
92Cu	0.325	0.343	9.256	9.924
93Cu	0.4	0.396	9.145	9.941
94Cu	0.351	0.35	9.196	9.897
95Cu	0.324	0.37	9.213	9.907

96Cu	0.325	0.343	9.257	9.925
97Cu	0.399	0.396	9.146	9.941
98Cu	0.351	0.35	9.196	9.897
99W	0.749	1.067	4.313	6.129
100W	0.755	1.077	4.342	6.174
101W	0.749	1.071	4.319	6.138
102W	0.753	1.101	4.347	6.201
103W	0.742	1.069	4.342	6.152
104W	0.748	1.08	4.313	6.142
105W	0.746	1.085	4.329	6.16
106W	0.752	1.069	4.352	6.173
107W	0.761	1.07	4.416	6.247
108W	0.748	1.066	4.321	6.135
109W	0.755	1.078	4.341	6.174
110W	0.748	1.068	4.328	6.144
111W	0.749	1.102	4.334	6.185
112W	0.741	1.072	4.328	6.141
113W	0.748	1.081	4.311	6.141
114W	0.748	1.083	4.349	6.179
115W	0.753	1.071	4.344	6.168
116W	0.761	1.07	4.415	6.246
117H	0.643	0.041	0	0.684
118H	0.639	0.041	0	0.681
119H	0.637	0.042	0	0.68
120H	0.645	0.044	0	0.688
121H	0.641	0.041	0	0.682
122H	0.645	0.042	0	0.686
123H	0.637	0.042	0	0.68
124H	0.639	0.041	0	0.681
125H	0.643	0.041	0	0.684
126H	0.645	0.042	0	0.687
127H	0.641	0.041	0	0.682
128H	0.645	0.044	0	0.689
129H	0.564	0.106	0	0.67
130H	0.524	0.093	0	0.618
131H	0.594	0.114	0	0.709
132H	0.554	0.103	0	0.657
133H	0.542	0.099	0	0.641
134H	0.592	0.117	0	0.709
135H	0.592	0.111	0	0.703
136H	0.63	0.074	0	0.704
137H	0.563	0.105	0	0.668
138H	0.524	0.093	0	0.618

139H	0.561	0.106	0	0.667
140H	0.597	0.116	0	0.712
141H	0.554	0.104	0	0.658
142H	0.542	0.098	0	0.64
143H	0.593	0.117	0	0.709
144H	0.591	0.113	0	0.704
145H	0.631	0.075	0	0.705
146H	0.561	0.106	0	0.667
147H	0.632	0.045	0	0.678
148H	0.636	0.043	0	0.679
149H	0.633	0.046	0	0.678
150H	0.636	0.043	0	0.68

 Table S7. The magnetic configuration (spin) of 1.

Atom	S	р	d	total
1C	0.001	-0.003	0	-0.002
2C	0	-0.002	0	-0.002
3C	0.01	0.065	0	0.075
4C	0.001	-0.018	0	-0.017
5C	-0.003	-0.021	0	-0.024
6C	0.002	0.007	0	0.008
7C	0.001	-0.002	0	-0.001
8C	0	-0.002	0	-0.002
9C	0.01	0.066	0	0.076
10C	0.001	-0.017	0	-0.016
11C	-0.003	-0.022	0	-0.025
12C	0.002	0.007	0	0.008
13N	0	-0.015	0	-0.014
14N	0.01	0.31	0	0.32
15N	0.01	0.273	0	0.283
16N	0.005	0.074	0	0.079
17N	0	-0.013	0	-0.012
18N	0.01	0.314	0	0.323
19N	0.01	0.276	0	0.286
20N	0.005	0.074	0	0.079
210	-0.003	-0.054	0	-0.057
220	0	-0.006	0	-0.006
230	-0.003	-0.021	0	-0.024
240	0	-0.001	0	-0.001
250	-0.002	-0.018	0	-0.02
260	0	-0.001	0	-0.001
270	0	0	0	0

280	-0.001	-0.012	0	-0.013
290	0	0.001	0	0.002
300	0	-0.007	0	-0.007
310	0	0	0	0
320	0	-0.005	0	-0.005
330	0	0.006	0	0.006
340	0.001	0	0	0.001
350	0	0.008	0	0.008
360	0	-0.001	0	0
370	0	0.01	0	0.011
380	0	0.001	0	0.001
390	0	-0.005	0	-0.005
400	0	-0.001	0	-0.001
410	0	-0.002	0	-0.002
420	0	-0.002	0	-0.002
430	0	0.001	0	0.002
440	0	-0.001	0	-0.001
450	0	0.005	0	0.005
460	0	0.005	0	0.005
470	0.001	0.014	0	0.015
480	0.001	0.002	0	0.003
490	0	0.004	0	0.004
500	0	-0.002	0	-0.002
510	0	-0.001	0	-0.001
520	0	0.004	0	0.004
530	0.003	0.015	0	0.018
540	0	0	0	0
550	-0.003	-0.055	0	-0.058
560	0	-0.005	0	-0.005
570	-0.003	-0.022	0	-0.025
580	0	-0.001	0	-0.001
590	-0.002	-0.018	0	-0.02
600	0	-0.001	0	-0.001
610	0	0.002	0	0.002
620	0	-0.005	0	-0.005
630	0	0.002	0	0.002
640	0	-0.006	0	-0.006
650	0	0	0	0
660	0	-0.006	0	-0.006
670	0	-0.001	0	-0.001
680	0	-0.007	0	-0.007
690	0	0.009	0	0.01
700	0	-0.003	0	-0.002

710	0	0.009	0	0.01
720	0	0.007	0	0.007
730	0	-0.004	0	-0.005
740	0	0.003	0	0.003
750	0	-0.005	0	-0.006
760	0	-0.001	0	-0.001
770	0	0	0	0
780	0	0	0	0
790	0	0.006	0	0.006
800	0	0.009	0	0.009
810	0.001	0.008	0	0.009
820	0	0	0	0
830	0	0.006	0	0.006
840	0	-0.003	0	-0.003
850	0	-0.004	0	-0.004
860	0.001	0.016	0	0.017
870	0.002	0.01	0	0.012
880	0	0.001	0	0.001
89Si	0	-0.001	0	-0.001
90Si	0	-0.001	0	-0.001
91Cu	0.001	0.001	-0.313	-0.311
92Cu	0	0	-0.019	-0.018
93Cu	-0.003	0.009	0.148	0.154
94Cu	0	0.001	0.047	0.047
95Cu	0.001	0.001	-0.312	-0.31
96Cu	0	0	-0.019	-0.019
97Cu	-0.003	0.009	0.147	0.152
98Cu	0	0.001	0.048	0.049
99W	0	-0.001	0.022	0.02
100W	0.001	0.001	0.028	0.03
101W	0	0	0	0
102W	0.003	0.007	0.169	0.179
103W	0.004	0.007	0.291	0.303
104W	0	0	0.061	0.061
105W	0.001	0.001	0.065	0.067
106W	0.002	0.002	0.108	0.111
107W	0	0	0.002	0.002
108W	0	-0.001	0.048	0.048
109W	0	0	0.014	0.014
110W	0.001	0.001	0.037	0.038
111W	0.001	0.003	0.114	0.119
112W	0.004	0.006	0.222	0.232
113W	0	0	0.061	0.061

114W	0.002	0.006	0.143	0.151
115W	0.001	0.001	0.062	0.064
116W	0	0	0.003	0.004
117H	0.002	0	0	0.002
118H	0	0	0	0
119H	-0.001	0	0	-0.001
120H	-0.001	0	0	-0.001
121H	0.002	0	0	0.002
122H	0	0	0	0
123H	-0.001	0	0	-0.001
124H	0	0	0	0
125H	0.002	0	0	0.002
126H	0	0	0	0
127H	0.002	0	0	0.002
128H	-0.002	0	0	-0.002
129H	0	0	0	0
130H	0.002	0	0	0.002
131H	0.006	0	0	0.006
132H	0.003	0	0	0.003
133H	0	0.001	0	0
134H	0.001	0	0	0.001
135H	0.012	0	0	0.012
136H	0	0	0	0
137H	0.002	0	0	0.001
138H	0.001	0	0	0.001
139H	0.001	0.001	0	0.001
140H	0.004	0	0	0.004
141H	0.001	0	0	0.001
142H	0.001	0.001	0	0.001
143H	0.003	0	0	0.003
144H	0.009	0	0	0.008
145H	0	0	0	0
146H	0	0.001	0	0.001
147H	0	0	0	0
148H	-0.002	0.001	0	-0.001
149H	0	0	0	0
150H	-0.002	0.001	0	-0.001

 Table S8. The charge of 2.

Atom	S	р	d	total
1C	0.863	1.66	0	2.523
2C	0.86	1.666	0	2.526

3C	0.842	1.797	0	2.64
4C	0.862	1.661	0	2.523
5C	0.86	1.666	0	2.526
6C	0.843	1.797	0	2.64
7N	1.289	2.248	0	3.537
8N	1.302	2.236	0	3.538
9N	1.288	2.25	0	3.538
10N	1.302	2.236	0	3.538
110	1.601	3.489	0	5.09
120	1.593	3.51	0	5.103
130	1.602	3.479	0	5.081
140	1.597	3.499	0	5.096
150	1.596	3.516	0	5.112
160	1.597	3.512	0	5.108
170	1.607	3.431	0	5.037
180	1.598	3.466	0	5.064
190	1.605	3.445	0	5.05
200	1.609	3.449	0	5.058
210	1.594	3.519	0	5.113
220	1.598	3.488	0	5.087
230	1.608	3.436	0	5.044
240	1.601	3.484	0	5.084
250	1.601	3.489	0	5.09
260	1.597	3.465	0	5.061
270	1.581	3.597	0	5.178
280	1.582	3.612	0	5.194
290	1.595	3.623	0	5.218
300	1.597	3.621	0	5.218
310	1.595	3.513	0	5.108
320	1.579	3.589	0	5.169
330	1.586	3.572	0	5.158
340	1.601	3.493	0	5.094
350	1.602	3.474	0	5.077
360	1.603	3.485	0	5.087
370	1.602	3.498	0	5.1
380	1.589	3.652	0	5.241
390	1.592	3.648	0	5.24
400	1.59	3.66	0	5.25
410	1.589	3.655	0	5.244
420	1.59	3.639	0	5.23
430	1.595	3.601	0	5.196
440	1.587	3.672	0	5.259
450	1.601	3.491	0	5.091

460	1.593	3.508	0	5.102
470	1.602	3.481	0	5.083
480	1.596	3.507	0	5.103
490	1.597	3.509	0	5.105
500	1.597	3.511	0	5.108
510	1.606	3.434	0	5.04
520	1.598	3.466	0	5.064
530	1.605	3.444	0	5.049
540	1.609	3.447	0	5.056
550	1.594	3.519	0	5.114
560	1.599	3.488	0	5.086
570	1.608	3.438	0	5.046
580	1.602	3.481	0	5.083
590	1.602	3.488	0	5.09
600	1.597	3.465	0	5.062
610	1.581	3.597	0	5.178
620	1.582	3.614	0	5.196
630	1.595	3.623	0	5.218
640	1.596	3.625	0	5.221
650	1.595	3.512	0	5.107
66O	1.58	3.59	0	5.17
670	1.586	3.572	0	5.158
680	1.601	3.494	0	5.095
690	1.601	3.479	0	5.079
700	1.603	3.483	0	5.086
710	1.601	3.504	0	5.106
720	1.587	3.657	0	5.244
730	1.59	3.652	0	5.242
740	1.59	3.659	0	5.25
750	1.59	3.652	0	5.242
760	1.591	3.639	0	5.23
770	1.595	3.602	0	5.197
780	1.589	3.669	0	5.258
79Si	0.674	1.017	0	1.691
80Si	0.674	1.017	0	1.691
81Cu	0.325	0.366	9.231	9.922
82Cu	0.408	0.407	9.132	9.947
83Cu	0.331	0.372	9.26	9.963
84Cu	0.325	0.366	9.233	9.923
85Cu	0.408	0.408	9.134	9.95
86Cu	0.332	0.373	9.261	9.965
87W	0.748	1.075	4.381	6.204
88W	0.742	1.066	4.314	6.121

89W	0.747	1.064	4.356	6.167
90W	0.757	1.085	4.348	6.19
91W	0.758	1.078	4.364	6.2
92W	0.733	1.058	4.312	6.103
93W	0.76	1.095	4.381	6.236
94W	0.763	1.114	4.377	6.254
95W	0.754	1.076	4.336	6.166
96W	0.752	1.074	4.379	6.205
97W	0.739	1.065	4.315	6.119
98W	0.741	1.066	4.352	6.158
99W	0.757	1.087	4.339	6.183
100W	0.758	1.076	4.367	6.202
101W	0.737	1.057	4.315	6.11
102W	0.76	1.095	4.384	6.239
103W	0.764	1.113	4.384	6.262
104W	0.753	1.074	4.342	6.169
105H	0.636	0.041	0	0.677
106H	0.641	0.041	0	0.682
107H	0.641	0.041	0	0.682
108H	0.639	0.043	0	0.682
109H	0.637	0.041	0	0.678
110H	0.639	0.041	0	0.679
111H	0.642	0.042	0	0.684
112H	0.639	0.043	0	0.683
113H	0.561	0.105	0	0.666
114H	0.598	0.116	0	0.714
115H	0.593	0.11	0	0.703
116H	0.591	0.114	0	0.706
117H	0.599	0.112	0	0.711
118H	0.593	0.115	0	0.709
119H	0.545	0.1	0	0.645
120H	0.598	0.115	0	0.712
121H	0.522	0.092	0	0.614
122H	0.542	0.098	0	0.64
123H	0.595	0.115	0	0.71
124H	0.521	0.092	0	0.613
125H	0.56	0.104	0	0.664
126H	0.6	0.117	0	0.717
127H	0.597	0.112	0	0.709
128H	0.591	0.114	0	0.705
129H	0.595	0.111	0	0.705
130H	0.593	0.114	0	0.707

Atom	S	р	d	total
1C	0.005	0.068	0	0.073
2C	0.002	0.017	0	0.019
3C	0	0	0	0
4C	0.005	0.07	0	0.075
5C	0.002	0.019	0	0.021
6C	0	0	0	0.001
7N	0.007	0.145	0	0.152
8N	0.009	0.255	0	0.265
9N	0.007	0.157	0	0.164
10N	0.009	0.256	0	0.265
110	0	0.004	0	0.005
120	0	-0.003	0	-0.003
130	0	-0.002	0	-0.002
140	0	-0.01	0	-0.011
150	0	-0.005	0	-0.005
160	-0.001	-0.017	0	-0.018
170	0	0	0	0
180	0.001	0.001	0	0.002
190	0	-0.002	0	-0.001
200	0	-0.001	0	-0.001
210	0	-0.001	0	-0.001
220	0	0.004	0	0.004
230	-0.002	-0.013	0	-0.015
240	0	0.003	0	0.003
250	0	-0.005	0	-0.006
260	-0.002	-0.017	0	-0.019
270	0.001	0.003	0	0.004
280	0	-0.001	0	-0.001
290	0.001	0.003	0	0.004
300	0.001	0.007	0	0.008
310	0	-0.005	0	-0.006
320	0	-0.002	0	-0.002
330	-0.002	-0.038	0	-0.04
340	0	-0.001	0	-0.001
350	0	0.002	0	0.002
360	0	-0.009	0	-0.009
370	0	0.004	0	0.004
380	0	0.004	0	0.004

 Table S9. The magnetic configuration (spin) of 2

390	0.003	0.015	0	0.018
400	0	0.002	0	0.002
410	0	0.001	0	0.001
420	0.003	0.013	0	0.016
430	0.001	0.004	0	0.005
440	0.001	0.01	0	0.011
450	0	0.004	0	0.004
460	0	-0.004	0	-0.004
470	0	-0.004	0	-0.004
480	0	-0.006	0	-0.006
490	0	-0.008	0	-0.009
500	-0.001	-0.018	0	-0.019
510	0	-0.001	0	-0.002
520	0.001	0.003	0	0.004
530	0	0	0	0.001
540	0	0.002	0	0.002
550	0	-0.001	0	-0.001
560	0	0.004	0	0.004
570	-0.002	-0.014	0	-0.016
580	0	0.003	0	0.003
590	0	-0.004	0	-0.004
600	-0.002	-0.016	0	-0.018
610	0	-0.002	0	-0.002
620	0	-0.001	0	-0.001
630	0.001	0.004	0	0.005
640	0.001	0.006	0	0.007
650	0	-0.005	0	-0.005
660	0	0.002	0	0.003
670	-0.002	-0.038	0	-0.04
68O	0	-0.001	0	0
690	0	0.001	0	0.001
700	0	-0.005	0	-0.006
710	0	0.001	0	0.001
720	0	0.005	0	0.005
730	0.003	0.017	0	0.019
740	0	0.004	0	0.004
750	0	0.001	0	0.002
760	0.003	0.013	0	0.016
770	0.001	0.003	0	0.004
780	0.001	0.009	0	0.01
79Si	0	-0.001	0	-0.001
80Si	0	-0.001	0	-0.001
81Cu	0.001	0.001	-0.233	-0.231

82Cu	-0.006	0.01	0.123	0.127
83Cu	0	0	-0.01	-0.009
84Cu	0.001	0.001	-0.237	-0.235
85Cu	-0.006	0.011	0.124	0.129
86Cu	0	0	-0.012	-0.011
87W	0	0	0.016	0.016
88W	0.001	0.001	0.034	0.035
89W	0.004	0.008	0.285	0.297
90W	0.001	0.001	0.088	0.09
91W	0.001	0.002	0.055	0.058
92W	0.004	0.01	0.297	0.311
93W	0	-0.001	0.035	0.034
94W	0.002	0.003	0.134	0.138
95W	0.001	0.002	0.081	0.084
96W	0.001	0.001	0.032	0.033
97W	0.001	0	0.042	0.043
98W	0.004	0.011	0.282	0.297
99W	0	0	0.061	0.061
100W	0.001	0.002	0.066	0.069
101W	0.005	0.008	0.29	0.303
102W	0	0	0.046	0.046
103W	0.003	0.004	0.145	0.151
104W	0.002	0.002	0.099	0.102
105H	0.001	0	0	0.001
106H	0	0	0	0
107H	0.003	0	0	0.003
108H	-0.002	0.001	0	-0.001
109H	0	0	0	0
110H	0.003	0	0	0.003
111H	0.001	0	0	0.001
112H	-0.002	0.001	0	-0.001
113H	0.002	0	0	0.002
114H	0	0	0	0
115H	0.014	0	0	0.013
116H	0.001	0	0	0.001
117H	0.014	0	0	0.013
118H	0.005	0	0	0.005
119H	0.001	0.001	0	0.002
120H	0.001	0	0	0.001
121H	0.004	0	0	0.005
122H	0.002	0.001	0	0.003
123H	0	0	0	0
124H	0.004	0.001	0	0.004

125H	0.003	0	0	0.003
126H	0	0	0	0
127H	0.013	0	0	0.013
128H	0.001	0	0	0.001
129H	0.013	0	0	0.013
130H	0.006	0	0	0.006

 Table S 10. The information of 1 geometric configuration

 Crystal lattice:

cell_length_a	25.00000
cell_length_b	25.00000
cell_length_c	25.00000
cell_angle_alpha	90.000000
cell_angle_beta	90.000000
cell_angle_gamma	90.000000

Atom	х	у	Z
1C	0.30075	0.53454	0.32154
2C	0.77967	0.57025	0.39587
3C	0.704	0.54554	0.33458
4C	0.73885	0.5285	0.3821
5C	0.27103	0.50559	0.35898
6C	0.26467	0.44525	0.34258
7C	0.69925	0.46546	0.67846
8C	0.22033	0.42975	0.60413
9C	0.296	0.45446	0.66542
10C	0.26115	0.4715	0.6179
11C	0.72897	0.49441	0.64102
12C	0.73534	0.55475	0.65742
13N	0.35974	0.51177	0.31725
14N	0.69943	0.51711	0.42563
15N	0.30237	0.50896	0.41158
16N	0.65487	0.51399	0.32831
17N	0.64026	0.48823	0.68275
18N	0.30057	0.48289	0.57437
19N	0.69763	0.49104	0.58842
20N	0.34513	0.48601	0.67169
210	0.50109	0.45517	0.47275
220	0.36776	0.30567	0.48113
230	0.38752	0.45338	0.46446
240	0.45007	0.3646	0.49815
250	0.61477	0.45588	0.46947
260	0.55578	0.36737	0.49994
270	0.39487	0.39076	0.28913

280	0.45479	0.26686	0.43463
290	0.36294	0.38724	0.54786
300	0.55826	0.26998	0.43695
310	0.50116	0.36289	0.60219
320	0.64084	0.31031	0.48691
330	0.41865	0.30177	0.57477
340	0.56334	0.45903	0.36914
350	0.50597	0.3943	0.30549
360	0.44347	0.44972	0.57806
370	0.64003	0.39336	0.55252
380	0.44522	0.45448	0.36563
390	0.61842	0.37542	0.40296
400	0.45379	0.30905	0.33736
410	0.56069	0.31252	0.33785
420	0.50461	0.36833	0.40716
430	0.40273	0.3796	0.65257
440	0.55573	0.45167	0.5815
450	0.70879	0.39607	0.46419
460	0.58665	0.30488	0.57835
470	0.40646	0.20801	0.51585
480	0.61636	0.3986	0.29244
490	0.29651	0.38974	0.46062
500	0.38832	0.37019	0.39868
510	0.50354	0.26366	0.52515
520	0.60317	0.21118	0.52176
530	0.51031	0.21476	0.35157
540	0.5982	0.38222	0.65577
550	0.49891	0.54483	0.52725
560	0.63224	0.69433	0.51887
570	0.61248	0.54662	0.53554
580	0.54993	0.6354	0.50185
590	0.38523	0.54412	0.53053
600	0.44422	0.63263	0.50006
610	0.60513	0.60924	0.71087
620	0.54521	0.73314	0.56537
630	0.63706	0.61276	0.45214
640	0.44174	0.73002	0.56305
650	0.49884	0.63711	0.39781
660	0.35916	0.68969	0.51309
670	0.58135	0.69823	0.42523
680	0.43666	0.54097	0.63086
690	0.49403	0.6057	0.69451
700	0.55653	0.55028	0.42194

710	0.35997	0.60664	0.44748
720	0.55478	0.54552	0.63437
730	0.38158	0.62458	0.59704
740	0.54621	0.69095	0.66264
750	0.43931	0.68748	0.66215
760	0.49539	0.63167	0.59284
770	0.59727	0.6204	0.34743
780	0.44427	0.54833	0.4185
790	0.29121	0.60393	0.53581
800	0.41335	0.69512	0.42165
810	0.59354	0.79199	0.48415
820	0.38364	0.6014	0.70756
830	0.70349	0.61026	0.53938
840	0.61168	0.62981	0.60132
850	0.49646	0.73634	0.47485
860	0.39683	0.78882	0.47824
870	0.48969	0.78524	0.64843
880	0.4018	0.61778	0.34423
89Si	0.50328	0.38975	0.46863
90Si	0.49672	0.61025	0.53137
91Cu	0.55914	0.5008	0.5017
92Cu	0.49757	0.49753	0.61077
93Cu	0.62992	0.49055	0.39979
94Cu	0.37706	0.48771	0.39289
95Cu	0.44086	0.4992	0.4983
96Cu	0.50243	0.50247	0.38923
97Cu	0.37008	0.50945	0.60021
98Cu	0.62294	0.51229	0.60711
99W	0.36368	0.38313	0.47104
100W	0.42888	0.37911	0.58869
101W	0.43763	0.38454	0.34302
102W	0.43077	0.2718	0.50627
103W	0.50916	0.27666	0.38047
104W	0.64108	0.38712	0.47419
105W	0.57876	0.2738	0.51073
106W	0.57143	0.38932	0.3433
107W	0.57541	0.38212	0.59159
108W	0.63632	0.61687	0.52896
109W	0.57112	0.62089	0.41131
110W	0.56237	0.61546	0.65698
111W	0.56923	0.7282	0.49373
112W	0.49084	0.72334	0.61953
113W	0.35892	0.61288	0.52581

114W	0.42124	0.7262	0.48927
115W	0.42857	0.61068	0.6567
116W	0.42459	0.61788	0.40841
117H	0.81268	0.57177	0.3667
118H	0.79716	0.56375	0.43577
119H	0.75971	0.60942	0.39648
120H	0.3051	0.42867	0.33875
121H	0.2436	0.44046	0.30406
122H	0.24196	0.42272	0.37278
123H	0.24071	0.39096	0.60038
124H	0.20027	0.43808	0.56581
125H	0.18928	0.42598	0.63519
126H	0.75884	0.57703	0.62772
127H	0.75523	0.55928	0.69658
128H	0.69508	0.5719	0.66035
129H	0.37591	0.42457	0.28035
130H	0.38572	0.41284	0.66965
131H	0.39119	0.18997	0.54686
132H	0.63632	0.43288	0.28742
133H	0.28127	0.42561	0.45001
134H	0.60185	0.17845	0.54255
135H	0.53178	0.19867	0.32309
136H	0.61764	0.45918	0.70168
137H	0.62374	0.57518	0.71978
138H	0.61423	0.58712	0.3304
139H	0.27383	0.56883	0.54256
140H	0.58321	0.82604	0.46846
141H	0.36342	0.56739	0.71281
142H	0.7188	0.57427	0.54963
143H	0.39017	0.81507	0.4504
144H	0.51296	0.80437	0.67327
145H	0.38228	0.54098	0.29857
146H	0.72623	0.43112	0.4574
147H	0.29077	0.56813	0.29543
148H	0.71558	0.57505	0.30412
149H	0.70919	0.43182	0.70449
150H	0.2844	0.42494	0.69585

Table S 11. The information of 2 geometric configuration

 Crystal lattice:

25.00000
25.00000
25.00000

cell_angle_alpha cell_angle_beta cell_angle_gamma

Atom	X	у	Z
1C	0.24407	0.47297	0.41317
2C	0.27181	0.47725	0.36489
3C	0.25286	0.45501	0.31249
4C	0.75593	0.52703	0.58683
5C	0.72819	0.52275	0.63511
6C	0.74714	0.54499	0.68751
7N	0.27179	0.49739	0.45959
8N	0.33004	0.48113	0.37183
9N	0.72821	0.50261	0.54041
10N	0.66996	0.51887	0.62817
110	0.33735	0.62913	0.58139
120	0.48125	0.64613	0.63107
130	0.39805	0.70964	0.59993
140	0.43108	0.73353	0.45533
150	0.53526	0.73094	0.4568
160	0.48384	0.74086	0.54596
170	0.41199	0.56219	0.60979
180	0.35687	0.55406	0.50959
190	0.39545	0.45547	0.49791
200	0.45442	0.4635	0.5895
210	0.4023	0.37576	0.56705
220	0.52028	0.41027	0.65581
230	0.53609	0.55692	0.60748
240	0.62096	0.69393	0.50931
250	0.57132	0.31989	0.63353
260	0.58347	0.45994	0.58447
270	0.46527	0.36324	0.46992
280	0.51825	0.37126	0.56031
290	0.26907	0.62244	0.49305
300	0.62946	0.40702	0.67101
310	0.63646	0.37199	0.56599
320	0.57329	0.3593	0.4717
330	0.52186	0.45207	0.49208
340	0.37953	0.38331	0.42061
350	0.34412	0.70361	0.50683
360	0.56539	0.70331	0.60174
370	0.53635	0.67746	0.36611
380	0.38252	0.64027	0.68374

390	0.58208	0.7932	0.54135
400	0.5777	0.62575	0.68207
410	0.40976	0.41024	0.67526
420	0.38915	0.80096	0.53659
430	0.30763	0.38989	0.50595
440	0.48643	0.7755	0.36821
450	0.66265	0.37087	0.41861
460	0.51875	0.35387	0.36893
470	0.60195	0.29036	0.40007
480	0.56892	0.26647	0.54467
490	0.46474	0.26906	0.5432
500	0.51616	0.25914	0.45404
510	0.58801	0.43781	0.39021
520	0.64313	0.44594	0.49041
530	0.60455	0.54453	0.50209
540	0.54558	0.5365	0.4105
550	0.5977	0.62424	0.43295
560	0.47972	0.58973	0.34419
570	0.46391	0.44308	0.39252
580	0.37904	0.30607	0.49069
590	0.42868	0.68011	0.36647
600	0.41653	0.54006	0.41553
610	0.53473	0.63676	0.53008
620	0.48175	0.62874	0.43969
630	0.73093	0.37756	0.50695
640	0.37054	0.59298	0.32899
650	0.36354	0.62801	0.43401
660	0.42671	0.6407	0.5283
670	0.47814	0.54793	0.50792
680	0.62047	0.61669	0.57939
690	0.65588	0.29639	0.49317
700	0.43461	0.29669	0.39826
710	0.46365	0.32254	0.63389
720	0.61748	0.35973	0.31626
730	0.41792	0.2068	0.45865
740	0.4223	0.37425	0.31793
750	0.59024	0.58976	0.32474
760	0.61085	0.19904	0.46341
770	0.69237	0.61011	0.49405
780	0.51357	0.2245	0.63179
79Si	0.51976	0.38734	0.49793
80Si	0.48024	0.61266	0.50207
81Cu	0.52858	0.50371	0.55247

82Cu	0.347	0.51285	0.44176
83Cu	0.40557	0.51114	0.55251
84Cu	0.47142	0.49629	0.44753
85Cu	0.653	0.48715	0.55824
86Cu	0.59443	0.48886	0.44749
87W	0.45133	0.3999	0.62148
88W	0.40675	0.6328	0.61963
89W	0.5581	0.72969	0.53268
90W	0.58655	0.39408	0.61947
91W	0.37578	0.38501	0.49695
92W	0.40995	0.73544	0.52948
93W	0.55388	0.62468	0.61799
94W	0.48563	0.71751	0.40358
95W	0.33666	0.62516	0.5063
96W	0.54867	0.6001	0.37852
97W	0.59325	0.3672	0.38037
98W	0.4419	0.27031	0.46732
99W	0.41345	0.60592	0.38053
100W	0.62422	0.61499	0.50305
101W	0.59005	0.26456	0.47052
102W	0.44612	0.37532	0.38201
103W	0.51437	0.28249	0.59642
104W	0.66334	0.37484	0.4937
105H	0.25284	0.41092	0.31391
106H	0.27976	0.46731	0.2799
107H	0.21195	0.46799	0.30239
108H	0.204	0.45616	0.41905
109H	0.7645	0.58513	0.68183
110H	0.77832	0.52008	0.70642
111H	0.71338	0.54822	0.71548
112H	0.79593	0.54399	0.58092
113H	0.2512	0.58832	0.48293
114H	0.36886	0.61774	0.71229
115H	0.61915	0.80428	0.54773
116H	0.59555	0.59986	0.70511
117H	0.40667	0.83552	0.53159
118H	0.50599	0.79269	0.33931
119H	0.35085	0.55789	0.3268
120H	0.60844	0.55851	0.31034
121H	0.71291	0.57569	0.50333
122H	0.64831	0.44278	0.67259
123H	0.39424	0.38595	0.70144
124H	0.28683	0.42421	0.49678

125H	0.74867	0.41178	0.51721
126H	0.63447	0.37967	0.28767
127H	0.43199	0.17058	0.46261
128H	0.404	0.40018	0.29527
129H	0.64743	0.18519	0.46555
130H	0.53343	0.2095	0.66177

Fig. S1. Views of compound 1 along the c axis and compound 2 along the b axis.

Figure S2. IR spectra of **1** and **2**, exhibiting an intense band at 1040 cm⁻¹, attributed to the feature of v_{P-O} , and bands at 940 cm⁻¹ due to $v_{W=O}$, bands at 850, 790, and 710 cm⁻¹ due to v_{M-O-M} (M = W or Ni). The characteristics of the -NH₂ and -CH₂ groups are fallen in the 1400 and 3100-3300 cm⁻¹ region.

1: 3439(m), 3291(m), 1627(m), 1460(w), 1388(w), 1062(m), 1022(w), 988(w), 947(m), 884(s), 726(s), 521(w).

2: 3439(s), 3262(m), 2979(w), 1627(m), 1590(m), 1455(w), 1383(w), 1172(w), 1062(w), 984(s), 942(s), 904(s), 779(s), 737(s), 660(s), 640(m), 521(w), 492(w).

Figure S3. The simulated and experimental PXRD patterns of compounds 1 (a) and 2 (b).

Figure S4. UV/Vis-NIR diffuse reflectance spectrum of 1 (a) and 2 (b).

Figure S5. The TG curves of 1 (a) and 2 (b).

The thermogravimatric behaviors of **1** and **2** were investigated in the flowing air atmosphere from 25 to 1000 °C (Figure S5).

For 1, the first weight loss of 2.30% from 25 to 240 °C is assigned to release of 7 lattice water molecules (calcd. 2.20%). From 240 to 480 °C, the weight loss of 6.49% corresponds to release of 2 Cu(dap)₂ groups (calcd. 6.68%). From 480 to 960 °C, the weight loss of 5.32% corresponds to release of 2 coordination water molecules and 4 dap ligands (calcd. 5.08%). For **2**, the first weight loss of 3.0% from 25 to 270 °C is assigned to release of 8 lattice water molecules and 2 coordination water molecules

(calcd. 3.0%). From 270 to 650 °C, the weight loss of 12.96% corresponds to release of 4 Cu(dap)₂ groups (calcd. 12.93%).

Formula for calculating H₂ production

We choose CH_4 as standard gas. And we can get the standard curve between H_2 and CH_4 : y=1.8458x (x is the rate of the peak area of H_2 and CH_4 , y is the volume of hydrogen production) by GC. And we can get the volume of hydrogen production by testing the peak area of H_2 and CH_4 by GC. Finally, we can get the $n(H_2)$ by $n=V/V_m$.

Fig. S6. Photocatalytic of **1** (4 mg), **2** (4 mg), CuSO4 (4 mg) and without catalyst. Conditions: LED light (450 nm), $[Ir(ppy)_2(dtbbpy)][PF_6]$ (0.2 mM), 3mL CH₃CN/DMF (1/3), H₂O (2 M) deaerated with Ar.

Fig. S7. Photocatalytic at different amount of TEOA for **1** (a) and **2** (b). Conditions: LED light (450 nm), [Ir(ppy)₂(dtbbpy)][PF₆] (0.2 mM), 3mL CH₃CN/DMF (1/3), H₂O (2 M) deaerated with Ar/CH₄ (4:1).

Fig. S8. Photocatalytic of **1** (a) and **2** (b) of the first run, second run and third run. Conditions: LED light (450 nm), $[Ir(ppy)_2(dtbbpy)][PF_6]$ (0.2 mM), 3mL CH₃CN/DMF (1/3), H₂O (2 M) deaerated with Ar/CH₄ (4:1).

Fig. S9. Photocatalytic of 2 for 4 mg and 6 mg. Conditions: LED light (450 nm), $[Ir(ppy)_2(dtbbpy)][PF_6]$ (0.2 mM), 3mL CH₃CN/DMF (1/3), H₂O (2 M) deaerated with Ar/CH₄ (4:1).

Fig. S10. The before and post-HER PXRD patterns of 1 (a) and 2 (b).