Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Copper-catalyzed cascade three-component azide-alkyne

cycloaddition/condensation/transesterification: easy access to 3-

triazolylcoumarins

Xinwei He,* Ruxue, Li, Mengqing Xie, Jiahui Duan, Qiang Tang, Yongjia Shang*

Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, People's Republic of China

Corresponding authors: xinweihe@mail.ahnu.edu.cn, shyj@mail.ahnu.edu.cn

Table of Contents

1. NMR spectra for all compounds	\$1-\$24
2. HRMS spectra for all compounds	S25-S36
3. X-ray data of compound 4c	S37-S39

¹H and ¹³C NMR spectra of compound 4a

¹H and ¹³C NMR spectra of compound 4b

¹H and ¹³C NMR spectra of compound 4c

¹H and ¹³C NMR spectra of compound 4g

¹H and ¹³C NMR spectra of compound 4h

¹H and ¹³C NMR spectra of compound 4i

¹H and ¹³C NMR spectra of compound 4j

•

¹H and ¹³C NMR spectra of compound 4m

¹H and ¹³C NMR spectra of compound 4n

¹H and ¹³C NMR spectra of compound 40

¹H and ¹³C NMR spectra of compound 4p

¹H and ¹³C NMR spectra of compound 4q

¹H and ¹³C NMR spectra of compound 4r

¹H and ¹³C NMR spectra of compound 4s

160 140 120 100 80 60 40 20 0 PPM

¹H and ¹³C NMR spectra of compound 4t

$^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra of compound 4v

¹H and ¹³C NMR spectra of compound 4w

¹H and ¹³C NMR spectra of compound 4x

¹H and ¹³C NMR spectra of compound 5c

HRMS spectra for all compounds

HRMS spectra for compound 4a

HRMS spectra for compound 4d

HRMS spectra for compound 4f

HRMS spectra for compound 4g

HRMS spectra for compound 4i

HRMS spectra for compound 4j

HRMS spectra for compound 4l

HRMS spectra for compound 4m

HRMS spectra for compound 4n

HRMS spectra for compound 40

HRMS spectra for compound 4p

HRMS spectra for compound 4r

HRMS spectra for compound 4s

HRMS spectra for compound 4t

HRMS spectra for compound 4u

HRMS spectra for compound 4v

HRMS spectra for compound 4w

HRMS spectra for compound 4x

HRMS spectra for compound 5a

X-ray data of compound 4c.

Figure S1. ORTEP of compound 4c.

Identification code	141117a_0m
CCDC number	1998453
Empirical formula	C17 H10 Cl N3 O2
Formula weight	323.73
Temperature	293(2) K
Wavelength	0.71073 Å
Crystal system, space group	Triclinic, P-1
Unit cell dimensions	a = 6.0960(7) Å alpha = 85.0800(10) deg.
	b = 7.6004(9) Å beta = $87.5620(10) deg.$
	c = 15.3686(18) Å gamma = 78.9580(10) deg.
Volume	696.05(14) Å ³
Z, Calculated density	2, 1.545 Mg/m ³
Absorption coefficient	0.288 mm ⁻¹
F(000)	332
Crystal size	0.16 x 0.15 x 0.12 mm
Theta range for data collection	2.66 to 25.02 deg.
Limiting indices	-6<=h<=7, -9<=k<=9, -18<=l<=18
Reflections collected / unique	4982 / 2436 [R(int) = 0.0174]
Completeness to theta $= 25.02$	99.1 %
Absorption correction	None
Max. and min. transmission	0.9662 and 0.9553
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	2436 / 0 / 208
Goodness-of-fit on F^2	1.026
Final R indices [I>2sigma(I)]	R1 = 0.0350, wR2 = 0.0976
R indices (all data)	R1 = 0.0394, $wR2 = 0.1023$
Largest diff. peak and hole	0.125 and -0.250 e.Å ⁻³

Table S1. Crystal data and structure refinement for 141117a 0m.

Table S2.	Bond	lengths	[Å] and	d angles	[deg]	for	141117a_	_0m.

	0 1 01		
C(1)-O(2)		1.196(2)	
C(1)-O(1)		1.368(2)	
C(1)-C(2)		1.465(2)	
C(2)-C(3)		1.342(2)	
C(2)-N(1)		1.423(2)	
C(3)-C(4)		1.437(2)	
C(3)-H(3)		0.9300	

C(4)-C(9)	1.389(2)
C(4)-C(5)	1.397(2)
C(5)-C(6)	1.378(2)
C(5)-H(5)	0.9300
C(6)-C(7)	1.386(2)
C(6)-Cl(1)	1.7388(17)
C(7)-C(8)	1.369(2)
C(7)-H(7)	0.9300
C(8)-C(9)	1.383(2)
C(8)-H(8)	0.9300
C(9)-O(1)	1.3723(19)
C(10)-N(1)	1.353(2)
C(10)-C(11)	1.359(2)
C(10)-H(10)	0.9300
C(11)-N(3)	1.366(2)
C(11)-C(12)	1.469(2)
C(12)-C(13)	1.387(2)
C(12)-C(17)	1.391(2)
C(13)-C(14)	1.385(2)
C(13)-H(13)	0.9300
C(14)-C(15)	1.372(3)
C(14)-H(14)	0.9300
C(15)-C(16)	1.372(3)
C(15)-H(15)	0.9300
C(16)-C(17)	1.380(2)
C(16)-H(16)	0.9300
C(17)-H(17)	0.9300
N(1)-N(2)	1.3574(19)
N(2)-N(3)	1.303(2)
O(2)-C(1)-O(1)	117.36(15)
O(2)-C(1)-C(2)	126.91(15)
O(1)-C(1)-C(2)	115.73(14)
C(3)-C(2)-N(1)	121.41(14)
C(3)-C(2)-C(1)	121.92(14)
N(1)-C(2)-C(1)	116.67(13)
C(2)-C(3)-C(4)	120.10(15)
C(2)-C(3)-H(3)	120.0
C(4)-C(3)-H(3)	120.0
C(9)-C(4)-C(5)	118.45(14)
C(9)-C(4)-C(3)	117.92(14)
C(5)-C(4)-C(3)	123.63(15)
C(6)-C(5)-C(4)	119.02(16)
C(6)-C(5)-H(5)	120.5

C(4)-C(5)-H(5)	120.5
C(5)-C(6)-C(7)	121.60(16)
C(5)-C(6)-Cl(1)	120.57(14)
C(7)-C(6)-Cl(1)	117.83(13)
C(8)-C(7)-C(6)	119.88(15)
C(8)-C(7)-H(7)	120.1
C(6)-C(7)-H(7)	120.1
C(7)-C(8)-C(9)	118.88(16)
C(7)-C(8)-H(8)	120.6
C(9)-C(8)-H(8)	120.6
O(1)-C(9)-C(8)	116.85(14)
O(1)-C(9)-C(4)	121.03(14)
C(8)-C(9)-C(4)	122.12(15)
N(1)-C(10)-C(1)	105.27(14)
N(1)-C(10)-H(10)	127.4
С(11)-С(10)-Н(10)	127.4
C(10)-C(11)-N(3)	108.09(14)
C(10)-C(11)-C(12)	129.68(15)
N(3)-C(11)-C(12)	122.19(14)
C(13)-C(12)-C(17)	118.62(15)
C(13)-C(12)-C(11)	120.87(14)
C(17)-C(12)-C(11)	120.50(14)
C(14)-C(13)-C(12)	120.31(16)
C(14)-C(13)-H(13)	119.8
C(12)-C(13)-H(13)	119.8
C(15)-C(14)-C(13)	120.45(17)
C(15)-C(14)-H(14)	119.8
C(13)-C(14)-H(14)	119.8
C(16)-C(15)-C(14)	119.73(16)
C(16)-C(15)-H(15)	120.1
C(14)-C(15)-H(15)	120.1
C(15)-C(16)-C(17)	120.49(17)
C(15)-C(16)-H(16)	119.8
C(17)-C(16)-H(16)	119.8
C(16)-C(17)-C(12)	120.40(16)
С(16)-С(17)-Н(17)	119.8
С(12)-С(17)-Н(17)	119.8
C(10)-N(1)-N(2)	110.18(13)
C(10)-N(1)-C(2)	131.13(13)
N(2)-N(1)-C(2)	118.69(12)
N(3)-N(2)-N(1)	107.05(13)
N(2)-N(3)-C(11)	109.41(13)
C(1)-O(1)-C(9)	123.22(13)