Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

## Supporting Informations

# Chromogenic and fluorogenic "off-on-off" chemosensor for selective and sensitive detection of aluminum ( $Al^{3+}$ ) and bifluoride ( $HF_2^{-}$ ) ions in solution and in living HepG2 cells: synthesis, experimental and theoretical studies

Samit Pramanik,<sup>a</sup> Saikat Kumar Manna,<sup>b</sup> Sudipta Pathak,<sup>b,\*</sup> Debasish Mondal,<sup>c</sup> Kunal Pal,<sup>d</sup> and Subrata Mukhopadhyay<sup>a</sup>

<sup>a</sup>Department of Chemistry, Jadavpur University, Jadavpur, Kolkata, West Bengal, India

<sup>b</sup>Department of Chemistry, Haldia Government College, Debhog, Purba Medinipur, West Bengal, India

<sup>c</sup>School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology,

Patiala-147004, Punjab, India

<sup>d</sup>Department of Life Science and Biotechnology, Jadavpur University, Kolkata 700032, India \*Sudipta Pathak, Tel:+91-8001317336

E-mail: sudiptachemster@gmail.com

### Table of contents:

| Sl. No. | Contents                                                                                                    | Page No. |
|---------|-------------------------------------------------------------------------------------------------------------|----------|
| 1.      | Table S1 Comparative study                                                                                  | 3-4      |
| 2.      | Fig. S1 <sup>1</sup> H NMR spectrum of L in DMSO- $d_6$ solution                                            | 4        |
| 3.      | Fig. S2 <sup>13</sup> C NMR spectrum of L in DMSO- $d_6$ solution                                           | 5        |
| 4.      | Fig. S3 ESI-mass spectrum of L                                                                              | 5        |
| 5.      | Fig. S4 FT-IR spectrum of L                                                                                 | 6        |
| 6.      | Table S2 Single Crystal X-ray diffraction data of L                                                         | 6-7      |
| 7.      | Table S3 Some important bond length and bond angles of L                                                    | 7-8      |
| 8.      | Fig. S5 <sup>1</sup> H NMR of L-Al <sup>3+</sup> complex in DMSO- $d_6$                                     | 8        |
| 9.      | Fig. S6 FT-IR spectrum of L-Al <sup>3+</sup> complex                                                        | 8        |
| 10.     | Fig. S7 Reversible changes in fluorescence intensity of probe L                                             | 9        |
| 11.     | Fig. S8 Plot of the fluorescence intensity at 476 nm versus the                                             | 9        |
|         | concentration of HF <sub>2</sub> <sup>-</sup>                                                               |          |
| 12.     | Fig. S9 Changes in the absorption spectra of L-2Al <sup>3+</sup> complex<br>in presence of different anions | 9        |
| 13.     | Fig. S10 Fluorescence Job's plot for L with Al <sup>3+</sup>                                                | 10       |
| 14.     | Fig. S11 Calculation for Limit of Detection (LOD)                                                           | 10       |
| 15.     | Fig. S12 Binding constant calculation                                                                       | 11       |
| 16.     | Computational details                                                                                       | 11-12    |
| 17.     | Table S4 Energies of the highest occupied molecular orbital                                                 | 12       |
|         | (HOMO) and lowest unoccupied molecular orbital (LUMO)                                                       |          |
| 18.     | Table S5 Energies of the important molecular orbitals in au                                                 | 12       |
| 19.     | Table S6 Calculated excitation energies (eV), oscillator                                                    | 13       |
|         | strengths (f), contributions for Al-complex                                                                 |          |
| 20.     | Fig. S13 Molecular orbital plots of L and L–2Al <sup>3+</sup>                                               | 14       |
| 21.     | Optimized coordinates of L and L–2Al <sup>3+</sup>                                                          | 15-17    |
| 22.     | Fig. S14 Cell survivability assay                                                                           | 17       |
| 23.     | Fig. S15 Influence of pH on absorbance ratio $(A_{402}/A_{345})$ of L                                       | 18       |
|         | in the absence and presence of Al <sup>3+</sup>                                                             |          |
| 24.     | Fig. S16 Fluorescence emission (at $\lambda_{max} = 476$ nm) spectral                                       | 18       |
|         | changes of L and L+Al <sup>3+</sup> complex with pH variation                                               |          |

 Table S1. Summary of representative fluorescent probes for Al<sup>3+</sup>

| Paper                                                                                                                                                                         | Al <sup>3+</sup>                          | Interferences                                                                    | Interferences Any other                              |                                                                                                                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|----------------------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                               | detection<br>limit                        | (cation/anion)                                                                   | remark                                               |                                                                                                                  |
| 1. S. K. Sheet, B. Sen, R.<br>Thounaojam, K. Aguan<br>and S. Khatua, J.<br>Photochem. Photobiol., A,<br>2017, <b>332</b> , 101.                                               | 1.62 μΜ                                   | PPi<br>(Inorganic<br>pyrophosphate)                                              | Starting materials<br>are not readily<br>available.  | Starting materials<br>are commercially<br>available.<br>There is no<br>interference from a<br>number of cations. |
| 2. S. Samanta, U. Manna,<br>T. Ray and G. Das, <i>Dalton</i><br><i>Trans.</i> , 2015, <b>44</b> , 18902.                                                                      | 6.86 × 10-7 M                             | No                                                                               | Starting materials<br>are not readily<br>available.  | Starting materials<br>are commercially<br>available.                                                             |
| 3. O. Alici and S. Erdemir,<br>Sens. Actuators, B, 2015,<br><b>208</b> , 159.                                                                                                 | $(13.7 \pm 0.17)$<br>× 10 <sup>-7</sup> M | No                                                                               | Starting materials<br>are not readily<br>available.  | Starting materials<br>are commercially<br>available.                                                             |
| 4. D. Maity and T.<br>Govindaraju, <i>Chem.</i><br><i>Commun.</i> , 2010, <b>46</b> , 4499.                                                                                   | Not reported                              | Cu <sup>2+</sup> , In <sup>3+</sup>                                              | Starting materials<br>are not readily<br>available.  | There is no<br>interference from a<br>number of cations.                                                         |
| 5. J. C. Qin, T. R. Li, B.<br>D. Wang, Z. Y. Yang and<br>L. Fan, <i>Spectrochim. Acta</i> ,<br>Part A, 2014, <b>133</b> , 38.                                                 | 8.2 × 10 <sup>-7</sup> M                  | No                                                                               | Multistep reaction.                                  | Comparatively less reaction steps.                                                                               |
| 6. R. Patil, A.<br>Moirangthem, R. Butcher,<br>N. Singh, A. Basu, K.<br>Tayade, U. Fegade, D.<br>Hundiwale and A. Kuwar,<br><i>Dalton Trans.</i> , 2014, <b>43</b> ,<br>2895. | 4.2 × 10 <sup>-5</sup> M                  | No                                                                               | Starting materials<br>are commercially<br>available. | LOD is 0.8 µM                                                                                                    |
| 7. S. Malkondu,<br><i>Tetrahedron</i> , 2014, <b>35</b> ,<br>5580.                                                                                                            | 0.33 μΜ                                   | Fe <sup>3+</sup> , Hg <sup>2+</sup> , Pb <sup>2+</sup> ,<br>and Zn <sup>2+</sup> | Starting materials<br>are not readily<br>available.  | There is no<br>interference from a<br>number of cations.                                                         |
| 8. V. K. Gupta, A. K.<br>Singh and L. K. Kumawat,<br><i>Sens. Actuators</i> , B, 2014,<br><b>195</b> , 98.                                                                    | 1.0 × 10 <sup>-6</sup> M                  | Ni <sup>2+</sup>                                                                 | Starting materials<br>are commercially<br>available. | There is no<br>interference from a<br>number of cations.<br>LOD is 0.8 µM                                        |
| 9. S. Erdemir and S.<br>Malkondu, <i>J. Lumin.</i> ,<br>2015, <b>158</b> , 401.                                                                                               | (9.82±0.27)<br>×10 <sup>-6</sup> M        | No                                                                               | Starting materials<br>are commercially<br>available. | LOD is 0.8 µM                                                                                                    |
| 10. S. Mukherjee, P. Mal<br>and H. Stoeckli-Evans, <i>J.</i><br><i>Lumin.</i> , 2016, <b>172</b> , 124.                                                                       | 0.08 μΜ                                   | Cu <sup>2+</sup> , Fe <sup>2+</sup> and Fe <sup>3+</sup>                         | Starting materials<br>are commercially<br>available. | There is no<br>interference from a<br>number of cations.                                                         |

| 11. S. Lia, D. Caoa, X.<br>Mengc, Z. Hua, Z. Lia, C.<br>Yuana, T. Zhoua, X. Hana<br>and W. Maa, J.<br>Photochem. Photobiol. A,<br>2020, <b>392</b> , 112427. | 0.16 µM              | No | Multistep reaction.                                         | Comparatively less reaction steps.                                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----|-------------------------------------------------------------|-----------------------------------------------------------------------|
| 12. Yl. Mua, Cj.<br>Zhanga, Zl. Gaoa, X.<br>Zhanga, Q. Lua, Js.<br>Yaoa and S. Xing, <i>Synth.</i><br><i>Met.</i> , 2020, <b>262</b> , 116334.               | 2×10 <sup>−6</sup> M | No | Starting materials<br>are not<br>commercially<br>available. | Starting materials<br>are commercially<br>available.<br>LOD is 0.8 μM |
| 13. V. Saini, K. Ranganb<br>and B. Khungar,<br><i>Photochem. Photobiol.</i><br><i>Sci.</i> ,2020,DOI:<br>10.1039/C9PP00477G                                  | 54 nM                | No | Starting materials<br>are not<br>commercially<br>available. | Starting materials<br>are commercially<br>available.                  |



Fig. S1 <sup>1</sup>H NMR spectrum of L in DMSO- $d_6$  solution



Fig. S2 <sup>13</sup>C NMR spectrum of L in DMSO-*d*<sub>6</sub> solution



Fig. S3 ESI-mass spectrum of L



Fig. S4 FT-IR spectrum of L

| Structure                                  | Sensor, L                                |
|--------------------------------------------|------------------------------------------|
| CCDC number                                | 1979155                                  |
| Empirical formula                          | $C_{48} H_{46} Cl_4 N_{12} O_{12}$       |
| Formula Weight                             | 1124.77                                  |
| Temperature (K)                            | 273(2)                                   |
| Wavelength (Å)                             | 0.71073                                  |
| Crystal system                             | Triclinic                                |
| space group                                | P-1                                      |
| a, b, c (Å)                                | 13.8336(11), 14.4635(11),<br>15.3548(12) |
| α, β, γ (°)                                | 66.622(2), 71.512(2), 85.747(3)          |
| Volume (Å <sup>3</sup> )                   | 2669.8(4)                                |
| Z / Density (calc.) (Mg/m <sup>3</sup> )   | 2 / 1.399                                |
| Absorption coefficient (mm <sup>-1</sup> ) | 0.293                                    |
| F(000)                                     | 1164.0                                   |
| Crystal size (mm <sup>3</sup> )            | $0.08 \times 0.13 \times 0.19$           |
| $\theta$ range for data collection         | 1.802 to 27.121                          |

| Completeness to $\theta$ (%)                     | 100%                                        |
|--------------------------------------------------|---------------------------------------------|
| Absorption correction                            | multi-scan                                  |
| Max. and min. transmission                       | 0.977 and 0.955                             |
| Refinement method                                | Full-matrix least-squares on F <sup>2</sup> |
| Data/parameters                                  | 11722/ 753                                  |
| Goodness-of-fit on F <sup>2</sup>                | 1.110                                       |
| Final R indices $[I > 2\sigma(I)]$               | $R_1 = 0.0534, wR_2 = 0.1636$               |
| R indices (all data)                             | $R_1 = 0.0765, wR_2 = 0.1886$               |
| Largest diff. peak and hole (e.Å <sup>-3</sup> ) | 0.780 and -0.588                            |

 $R_1 = \sum ||F_o| - |F_c|| / \sum |F_o|, wR_2 = \left[\sum \{(F_o^2 - F_c^2)^2\} / \sum \{w(F_o^2)^2\}\right]^{1/2} w = 1 / \{\sigma^2(F_o^2) + (aP)^2 + bP\}$ where, a = 0.1000 and b = 0.6180. P =  $(F_o^2 + 2F_c^2)/3$ 

**Table S3** Some important bond length and bond angles of L

| Bond          | Length (Å) | Bond             | Angle (°)  |
|---------------|------------|------------------|------------|
| Cl(1) - C(18) | 1.739(3)   | C(1)-O(1)-H(1)   | 112(2)     |
| Cl(2)—C(4)    | 1.736(3)   | C(21)-O(4)-H(15) | 110(3)     |
| O(1)-C(1)     | 1.363(3)   | N(2)-N(1)-C(15)  | 117.69(19) |
| O(2)-C(8)     | 1.216(3)   | N(1)-N(2)-C(14)  | 118.93(19) |
| O(3)-C(14)    | 1.220(3)   | N(5)-N(4)-C(8)   | 118.6(2)   |
| O(4)—C(21)    | 1.351(3)   | N(4)-N(5)-C(7)   | 118.17(19) |
| O(1)—H(1)     | 0.82(3)    | N(1)-N(2)-H(10)  | 119(2)     |
| O(4)—H(15)    | 0.90(4)    | C(14)—N(2)—H(10) | 123(2)     |
| N(1)—N(2)     | 1.374(3)   | N(5)-N(4)-H(6)   | 120(2)     |
| N(1)-C(15)    | 1.273(3)   | C(8)-N(4)-H(6)   | 120(2)     |
| N(2)—C(14)    | 1.347(3)   | O(1)-C(1)-C(6)   | 122.0(2)   |
| N(4)—N(5)     | 1.359(3)   | O(1)-C(1)-C(2)   | 118.2(2)   |
| N(4)—C(8)     | 1.356(4)   | O(2)-C(8)-N(4)   | 123.6(2)   |
| N(5)-C(7)     | 1.279(3)   | O(3)-C(14)-N(2)  | 123.3(2)   |

| N(2)—H(10)  | 0.80(3) | O(2)-C(8)-C(9)   | 122.2(2) |
|-------------|---------|------------------|----------|
| N(4)—H(6)   | 0.72(2) | O(3)-C(14)-C(13) | 122.1(2) |
| C(7)—H(5)   | 0.99(3) |                  |          |
| C(15)-H(11) | 0.93(3) |                  |          |



Fig. S5 <sup>1</sup>H NMR of L-2Al<sup>3+</sup> complex in DMSO-d<sub>6</sub>



Fig. S6 FT-IR spectrum of L-Al<sup>3+</sup> complex







Fig. S8 Plot of the fluorescence intensity at 476 nm versus the concentration of  $HF_2^-$ 



**Fig. S9** (a) UV-vis absorption spectra of  $L-2Al^{3+}$  complex with sodium salt of bifluoride in DMSO-H<sub>2</sub>O (8:2, v/v, 10 mM HEPES buffer, pH 7.4) solution. Inset: Color change after addition of HF<sub>2</sub><sup>-</sup> to L+Al<sup>3+</sup>. (b) Changes in the absorption spectra of L-2Al<sup>3+</sup> complex in presence of different anions.



**Fig. S10** Fluorescence Job's plot for L with Al<sup>3+</sup> in DMSO/H<sub>2</sub>O solution (8:2, v/v, 10 mM HEPES buffer, pH 7.4). ([H] = [G] =  $4 \times 10^{-5}$  M)

#### **Calculation for detection limit:**

The detection limit of L for  $Al^{3+}$  was determined using the following equation: Detection limit = 3Sbl/S, Sb1 is the standard deviation of the blank solution; S is the slope of the calibration curve.



[Al<sup>3+</sup>] M

Fig. S11 Calibration curve for fluorescence titration of L with  $Al^{3+}$ 

From the graph we get slope (S) =  $1 \times 10^{12}$  Standard deviation (Sb1 = 274989.74356) Thus, using the formula, we get the detection limit=  $0.8249 \times 10^{-6}$  M =  $0.8249 \mu$ M =  $8.2 \times 10^{-7}$  M.

#### **Binding constant calculation:**



Fig. S12 Bensei-Hildebrand plot obtained from the Fluorescence (emission calculated from 478 nm) studies. Binding constant ( $K_a = 4.26 \times 10^4 \text{ M}^{-1}$ ) curve of sensor L with Al<sup>3+</sup> determined by fluorescence method.

#### **Computational Details:**

All the geometries for L and L-2Al<sup>3+</sup> were optimized by using density functional theory (DFT) at the Becke's three-parameter hybrid exchange functional and the Lee–Yang–Parr correlation functional  $(B3LYP)^{1-3}$  in combination with Pople's spilt-valence basis set 6-31+G(d, p) basis set<sup>4</sup>. Harmonic vibrational frequencies also computed to confirm the optimized structures as local minima (no imaginary frequency). The effect of solvent (dimethyl sulfoxide) were considered by using self-consistent reaction field (SCRF) procedure with the integral equation formalism polarized continuum model (IEF-PCM).<sup>5-9</sup> Time dependent DFT calculation were also conducted at the same level of theory specifying the keyword **TD** (N states = 50, root = 1).<sup>10-11</sup> All the computations have been carried out in Gaussian 16 program.<sup>12</sup>

- 1. A. D. J. Becke, Chem. Phys., 1993, 98, 5648-5662.
- 2. C. T. Lee, W. T. Yang, and R. G. Parr, Phys. Rev. B, 1988, 37, 785-789.
- 3. B. Miehlich, A. Savin, H. Stoll, and H. Preuss, Chem. Phys. Lett., 1989, 157, 200-206.
- 4. J. D. Dill, and J. A. J. Pople, Chem. Phys., 1975, 62, 2921–2923.
- 5. J. Tomasi, and M. Persico, Chem. Rev., 1994, 94, 2027–2094.
- 6. M. Cossi, V. Barone, R. Cammi, and J. Tomasi, Chem. Phys. Lett., 1996, 255, 327-335.
- 7. V. Barone, M. Cossi, and J. Tomasi, J. Chem. Phys., 1997, 107, 3210-3221.
- 8. V. Barone, M. Cossi, and J. Tomasi, J. Comput. Chem., 1998, 19, 404-417.
- 9. M. Cossi, and V. Barone, J. Chem. Phys., 1998, 109, 6246-6254.
- 10. R. Bauernschmitt and R. Ahlrichs, Chem. Phys. Lett., 1996, 256, 454-64.
- 11. R. E. Stratmann, G. E. Scuseria, and M. J. Frisch, J. Chem. Phys., 1998, 109, 8218-24.
- 12. Gaussian 16, Revision C.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian,

J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, -Y. D. Williams, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Jr. Montgomery, J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.

**Table S4**. Energies of the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO)

| Species             | E <sub>HOMO</sub> (a.u) | E <sub>LUMO</sub> (a.u) | $\Delta E(a.u)$ | ΔE(eV) | ∆E(kcal/mol) |
|---------------------|-------------------------|-------------------------|-----------------|--------|--------------|
| L                   | -0.23351                | -0.0926                 | 0.14091         | 3.83   | 88.4         |
| L-2Al <sup>3+</sup> | -0.22925                | -0.11303                | 0.11622         | 3.16   | 72.9         |

**Table S5**. Energies of the important molecular orbitals in au

| Orbital | L        | L-2Al <sup>3+</sup> |
|---------|----------|---------------------|
| НОМО    | -0.23351 | -0.22925            |
| HOMO-1  | -0.23352 | -0.23089            |
| НОМО-2  | -0.25807 | -0.25262            |
| LUMO    | -0.09260 | -0.11303            |
| LUMO-1  | -0.09004 | -0.11272            |
| LUMO-2  | -0.06651 | -0.08224            |

**Table S6.** Calculated excitation energies (eV), oscillator strengths (f), contributions for Alcomplex. The data were calculated by the TDDFT//B3LYP/6-31+G(d,p) level of theory based on the optimized ground state geometries.

| Species             | Electronic<br>Transition | Excitation<br>Energy | f      | Contributions                                                         |
|---------------------|--------------------------|----------------------|--------|-----------------------------------------------------------------------|
| L                   | $S_0 \rightarrow S_1$    | 3.1938 eV 388.21 nm  | 0.2353 | HOMO $\rightarrow$ LUMO (64%)<br>HOMO-3 $\rightarrow$ LUMO+1<br>(31%) |
|                     | $S_0 \rightarrow S_7$    | 3.9695 eV 312.34 nm  | 0.2148 | HOMO -4→ LUMO (69%)                                                   |
|                     | $S_0 \rightarrow S_1$    | 2.6986 eV 459.44 nm  | 0.2646 | HOMO $\rightarrow$ LUMO (49%)<br>HOMO $\rightarrow$ LUMO+1 (32%)      |
| L-2Al <sup>3+</sup> | $S_0 \rightarrow S_{10}$ | 3.7387 eV 331.62 nm  | 0.3280 | HOMO-3→ LUMO (58%)                                                    |
|                     | $S_0 \rightarrow S_{15}$ | 3.8651 eV 320.78 nm  | 0.4837 | HOMO-3→ LUMO+1<br>(41%)                                               |



Figure S13: Molecular orbital plots of L and L–2Al<sup>3+</sup>

## **Optimized Coordinates:**

# L

| С  | -1.197844000 | -5.389224000 | -0.001934000 |
|----|--------------|--------------|--------------|
| С  | -1.148112000 | -3.990834000 | -0.001571000 |
| Ν  | 0.002832000  | -3.302113000 | -0.002790000 |
| С  | 1.153681000  | -3.990893000 | -0.002115000 |
| С  | 1.203474000  | -5.389259000 | -0.002354000 |
| С  | 0.002792000  | -6.096593000 | -0.002834000 |
| С  | -2.443812000 | -3.219019000 | 0.001308000  |
| С  | 2.449392000  | -3.218810000 | 0.000210000  |
| 0  | 3.544264000  | -3.780738000 | 0.009696000  |
| 0  | -3.538441000 | -3.781541000 | 0.010085000  |
| Ν  | -2.286511000 | -1.862251000 | -0.005351000 |
| Ν  | 2.291238000  | -1.862182000 | -0.007444000 |
| Ν  | 3.373965000  | -1.040511000 | -0.002037000 |
| Ν  | -3.370254000 | -1.042068000 | -0.000642000 |
| С  | 3.174984000  | 0.236539000  | -0.007230000 |
| С  | -3.173684000 | 0.235362000  | -0.004304000 |
| С  | -4.299855000 | 1.155414000  | -0.000608000 |
| С  | 4.299051000  | 1.158922000  | -0.001780000 |
| С  | -4.045554000 | 2.541770000  | -0.000480000 |
| С  | -5.098029000 | 3.443999000  | 0.001039000  |
| С  | -6.425553000 | 3.000661000  | 0.002936000  |
| С  | -6.692008000 | 1.634874000  | 0.002917000  |
| С  | -5.646649000 | 0.701868000  | 0.001779000  |
| С  | 4.041558000  | 2.544546000  | -0.003611000 |
| С  | 5.091902000  | 3.449283000  | -0.000144000 |
| С  | 6.420355000  | 3.008890000  | 0.005339000  |
| С  | 6.689931000  | 1.643616000  | 0.007219000  |
| С  | 5.646737000  | 0.708330000  | 0.004148000  |
| Cl | 4.750686000  | 5.180656000  | -0.003135000 |
| 0  | 5.968158000  | -0.604922000 | 0.005898000  |
| Η  | -2.158574000 | -5.888837000 | -0.001684000 |
| Η  | 2.164379000  | -5.888895000 | -0.002937000 |
| Н  | 0.002656000  | -7.181404000 | -0.002904000 |
| Н  | -1.343695000 | -1.480433000 | -0.011012000 |
| Н  | 1.347871000  | -1.481366000 | -0.014049000 |
| Н  | 2.166228000  | 0.659945000  | -0.015428000 |
|    |              |              |              |

| Η  | -2.165776000 | 0.660788000  | -0.009933000 |
|----|--------------|--------------|--------------|
| Н  | -7.241359000 | 3.714933000  | 0.003453000  |
| Н  | 3.014927000  | 2.896045000  | -0.007931000 |
| Н  | 7.234558000  | 3.725182000  | 0.007486000  |
| Η  | 7.713705000  | 1.284327000  | 0.011399000  |
| Н  | 5.130654000  | -1.134942000 | 0.003310000  |
| 0  | -5.964973000 | -0.612139000 | 0.001677000  |
| Н  | -5.125973000 | -1.139695000 | 0.000334000  |
| Н  | -3.019686000 | 2.895763000  | -0.002107000 |
| Cl | -4.760826000 | 5.176229000  | 0.000754000  |
| Н  | -7.715027000 | 1.273473000  | 0.003912000  |
|    |              |              |              |

## L-2Al<sup>3+</sup>

| C      | 1 106107000  | 4 020306000  | 0 500064000                  |
|--------|--------------|--------------|------------------------------|
| C      | -1.190197000 | -4.020390000 | -0.399004000                 |
| N<br>N | -1.107220000 | -1 959/6000  | -0.314040000<br>-0.473309000 |
| C      | 1 180556000  | -1.555400000 | -0.518080000                 |
| C      | 1 20/1329000 | -4.076672000 | -0.518585000                 |
| C      | -0.012601000 | -4 754608000 | -0.642014000                 |
| C      | -2 348482000 | -1 812628000 | -0.463117000                 |
| C      | 2 457978000  | -1 924019000 | -0 478874000                 |
| 0      | 3 578819000  | -2 497922000 | -0 496046000                 |
| õ      | -3 493298000 | -2 334578000 | -0 542587000                 |
| Ň      | -2 239985000 | -0 484381000 | -0 326999000                 |
| N      | 2.410734000  | -0.588394000 | -0.422152000                 |
| N      | 3.634100000  | 0.036269000  | -0.381926000                 |
| N      | -3.431030000 | 0.196262000  | -0.271303000                 |
| С      | 3.666132000  | 1.332330000  | -0.262546000                 |
| С      | -3.424963000 | 1.485056000  | -0.096963000                 |
| С      | -4.631411000 | 2.252222000  | 0.003613000                  |
| С      | 4.888568000  | 2.075259000  | -0.214830000                 |
| С      | -4.503461000 | 3.655687000  | 0.158273000                  |
| С      | -5.626748000 | 4.445316000  | 0.281412000                  |
| С      | -6.911382000 | 3.871238000  | 0.260460000                  |
| С      | -7.054893000 | 2.502263000  | 0.113262000                  |
| С      | -5.932795000 | 1.647195000  | -0.025183000                 |
| С      | 4.803570000  | 3.481903000  | -0.062574000                 |
| С      | 5.953099000  | 4.241869000  | -0.019236000                 |
| С      | 7.218325000  | 3.634795000  | -0.128347000                 |
| С      | 7.317977000  | 2.262030000  | -0.279946000                 |
| С      | 6.166696000  | 1.437364000  | -0.326706000                 |
| Cl     | 5.847662000  | 5.992215000  | 0.172801000                  |
| 0      | 6.310019000  | 0.143358000  | -0.479993000                 |
| Н      | -2.166945000 | -4.499744000 | -0.627912000                 |
| Η      | 2.151805000  | -4.600357000 | -0.634667000                 |
| Н      | -0.038187000 | -5.836625000 | -0.705733000                 |
| Η      | -1.339756000 | -0.019949000 | -0.242732000                 |
| Η      | 1.532833000  | -0.076905000 | -0.413390000                 |
| Н      | 2.727704000  | 1.884189000  | -0.194480000                 |
| Η      | -2.472273000 | 2.009785000  | -0.017953000                 |

| Η  | -7.788031000 | 4.502597000  | 0.360164000  |
|----|--------------|--------------|--------------|
| Η  | 3.828315000  | 3.950755000  | 0.019620000  |
| Н  | 8.115088000  | 4.244431000  | -0.093143000 |
| Н  | 8.289781000  | 1.787291000  | -0.365055000 |
| 0  | -6.129489000 | 0.358730000  | -0.161087000 |
| Н  | -3.513427000 | 4.099629000  | 0.179046000  |
| Cl | -5.462435000 | 6.191916000  | 0.469470000  |
| Н  | -8.041816000 | 2.051908000  | 0.096590000  |
| Al | -5.025669000 | -1.049578000 | -0.546654000 |
| Al | 5.204688000  | -1.331672000 | -0.443255000 |
| 0  | 6.368427000  | -2.632861000 | -0.773863000 |
| Н  | 6.384593000  | -3.297790000 | -0.073887000 |
| 0  | 5.002616000  | -1.263320000 | -2.494547000 |
| Н  | 5.326594000  | -0.466827000 | -2.942601000 |
| Н  | 5.574570000  | -1.998846000 | -2.776276000 |
| Ν  | 5.248929000  | -2.316254000 | 2.334551000  |
| 0  | 5.536373000  | -3.442047000 | 1.896358000  |
| 0  | 5.082004000  | -2.079284000 | 3.535830000  |
| 0  | 5.113056000  | -1.311291000 | 1.506803000  |
| Ν  | -4.925891000 | -2.330456000 | 2.294054000  |
| 0  | -4.428019000 | -2.280183000 | 3.418972000  |
| 0  | -5.512847000 | -3.371224000 | 1.878657000  |
| 0  | -4.859454000 | -1.292110000 | 1.533142000  |
| С  | -4.643290000 | -1.819790000 | -3.316180000 |
| Η  | -4.930535000 | -2.872456000 | -3.154286000 |
| Η  | -3.543982000 | -1.792624000 | -3.388887000 |
| Η  | -5.042681000 | -1.521439000 | -4.295607000 |
| 0  | -5.135059000 | -0.958195000 | -2.319267000 |
| 0  | -6.341350000 | -2.446685000 | -0.369610000 |
| Η  | -6.162833000 | -3.014146000 | 0.438209000  |
| Η  | -6.532509000 | -2.993060000 | -1.144751000 |



Fig. S14 Cell survivability of WI-38 cells exposed to the ligand.



Fig. S15 Influence of pH on absorbance ratio  $(A_{402}/A_{345})$  of L in the absence and presence of  $Al^{3+}$ .



Fig. S16 Fluorescence emission (at  $\lambda_{max} = 476$  nm) spectral changes of L and L+Al<sup>3+</sup> complex with pH variations.