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Experimental Section:
Instrumentation Techniques:

Nuclear Magnetic Resonance (NMR): The 'H, '3C and 3'P NMR spectroscopy was carried

out on a BRUKER 500 MHz spectrometer using CDCl;, DMSO-ds, and D,0 as solvents. 'H

NMR spectra were calibrated to tetramethylsilane as internal standard (3 0.00).

Fourier Transform Infra -Red (FT-IR): FT-IR spectra were obtained on FT-IR Perkin-

Elmer spectrometer at a nominal resolution of 2 cm™!.

ESI-MS: HRMS analyses were performed with Q-TOF YA263 high resolution (Waters

Corporation) instruments by +ve mode electrospray ionization.

Rheometer: The rheological measurements were carried out on a TA-ARG2 rheometer using
a steel parallel plate with 60 mm diameter at 25 °C with 1.0 mm Gap spacing for all gel
samples. The dynamic shear moduli (G’ and G"”) were recorded in the linear viscoelastic

regime at a strain of y = 1% as a function of angular frequency (0.1-100 rad/s).

UV-Vis Spectroscopy: UV-visible absorption measurements were carried out on U-4100

spectrophotometer; HITACHI spectrometer, with a scan rate of 500 nm/min.

Scanning Electron Microscopy (SEM): High resolution SEM was performed on a Zeiss
microscope; SUPRA 55VP-Field Emission Scanning Electron Microscope. High
performance variable pressure FE-SEM with patented GEMINI column technology. Schottky
type field emitter system, single condenser with crossover-free beam path. Resolution: 1.0
nm at 15 kV; 1.6 nm at 1 kV high vacuum mode. 2.0 nm at 30 kV at variable pressure mode.

Thermo Gravimetric Analysis: Thermal studies were carried out using a Mettler Toledo

TGA/SDTA 851¢ instrument at a heating rate of 10 °C min!.



Transmission Electron Microscopy:
The gels were sliced at 30 nm thick films using microtome facility (Power Tome PC, RMC
Boeckeler). The sliced film was dried under vacuum and was analysed using Transmission

Electron Microscope; TEM (JEM-2100F) facility at 120 kV.
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Figure S1: 'TH NMR spectrum of compound 3 in CDCl;
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Figure S2: '"H NMR spectrum of compound 4 in CDCl;
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Figure S3: 13C NMR spectrum of compound 4 in CDCl;
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Figure S4: ESI-MS of compound 4 confirming its formation
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Figure S6: 13C NMR spectrum of compound 5 in CDCl;
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Figure S7: 3'P NMR of compound 5 in CDCl;
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Figure S8: ESI-MS of compound 5 confirming its formation
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Figure S9: 'TH NMR spectrum of compound 6 in CDCl;
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Figure S10: 3C NMR spectrum of compound 6 in CDCl;
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Figure S11: 3'P NMR of compound 6 in CDCl;
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Figure S12: ESI-MS of compound 6 confirming its formation
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Figure S13: Differential Scanning Calorimetry of Compound 3 and TPP gel for a) heating
and b) cooling cycle respectively.
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Figure S14: FE-SEM image of the as prepared TPP gel.
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Solubility parameter,

Solvent By poen (cal cm 312
Water 23.40
DMSO 13.03
DMF 12.14
1,4- dioxane 10.02
DCM 9.93
THF 9.52

Figure S15: Hansen solubility parameter of the solvents used.
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Figure S16: pHzpc data of the TPP gel.
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Equation S1: Formula for dye adsorption

dye removal (%) = % x 100

where Co (mg/L) and Ce (mg/L) represent the initial and final (or at time t) concentration of

dye in aqueous solution.

Table S1. Adsorption capacity of different chemical adsorbents for the removal of azo

dyes as recognised by their maximum adsorption capacity (mg of dye/g of adsorbent)

Maximum removal

Adsorbent Dye sorbate efficiency (mg/g) Reference
Granular activated carbon Congo red 9.1 1
Zeolite DB 71 13.7 2
Graphene oxide acid orange 8 29.0 3
Cellulose/chitosan hydrogel Congo red 40 4
Chitosan halloysite
nanotubes Congo red 41.5 5
Magnetic graphene/chltgsan (MGCh) Acid orange 7 427 6
nanocomposite
Chemically modified brown macroalga | Acid orange 2 45.47 7
Amberlite IRA-958 Acid orange 7 50 8
Multiwalled carbon
nanotube tartrazine 84.0 9
Thlol—norbgmene based photo Acid orange 7 98.6 This work
crosslinked network
Graphitized and heteroatom doped Acid orange 7 285.71 10

porous carbon
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Table S2. Adsorption capacity of different bio-adsorbents for the removal of azo dye

acid orange 7 as recognised by their maximum adsorption capacity (mg of dye/g of

adsorbent)
Maximum removal Reference
Adsorbent Dye sorbate .
efficiency (mg/g)
PR leaves Acid orange 7 7.52 1
Paulownia tomentosa . 12
Steud leaf powder Acid orange 52 10.5
Canola stalks (CS) Acid orange 7 25.06 13
Spent brewery grains Orange II 28.54 14
Brown macro alga
Stoechospermum Acid orange 7 35.62 15
marginatum
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