Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Electronic Supporting Information

for

Triphenylphosphonium conjugated quaternary ammonium based gel: synthesis and potential application in efficient removal of toxic acid orange 7 dye from aqueous solution

Sayantani Bhattacharya, Diptendu Patra and Raja Shunmugam*

Polymer Research Centre, Department of Chemical Sciences and Centre for Advanced

Functional Materials, Indian Institute of Science Education and Research Kolkata, Mohanpur,

West Bengal, 741246, India

Sl no.	Contents	Page no.	
1	Experimental Section	S 3	
2	Figure S1: ¹ H NMR spectrum of compound 3	S5	
3	Figure S2: ¹ H NMR spectrum of compound 4	S5	
4	Figure S3: ¹³ C NMR spectrum of compound 4	S6	
5	Figure S4: ESI-MS of compound 4	S6	
6	Figure S5: ¹ H NMR spectrum of compound 5	S7	
7	Figure S6: ¹³ C NMR spectrum of compound 5	S7	
8	Figure S7: ³¹ P NMR spectrum of compound 5	S8	
9	Figure S8: ESI-MS of compound 5	S8	
10	Figure S9: ¹ H NMR spectrum of compound 6	S9	
11	Figure S10: ¹³ C NMR spectrum of compound 6	S9	
12	Figure S11: ³¹ P NMR spectrum of compound 6	S10	
13	Figure S12: ESI-MS of compound 6	S10	
14	Figure S13: Differential Scanning Calorimetry of TPP gel for a) heating and b) cooling cycle respectively.	S11	
15	Figure S14: FE-SEM image of as prepared TPP gel	S11	
16	Figure S15: Hansen solubility parameter of the solvents	S12	

	used.	
16	Figure S16: pHzpc data of the TPP gel.	S12
17	Equation S1: Formula for dye adsorption	S13
18	Table S1. Adsorption capacity of different chemical adsorbents for the removal of azo dyes as recognised by their maximum adsorption capacity (mg of dye/g of adsorbent)	S13
19	Table S2. Adsorption capacity of different bio-adsorbents for the removal of azo dye acid orange 7 as recognised by their maximum adsorption capacity (mg of dye/g of adsorbent)	S14
20	References	S14

Experimental Section:

Instrumentation Techniques:

Nuclear Magnetic Resonance (NMR): The ¹H, ¹³C and ³¹P NMR spectroscopy was carried out on a BRUKER 500 MHz spectrometer using CDCl₃, DMSO- d_6 , and D₂O as solvents. ¹H NMR spectra were calibrated to tetramethylsilane as internal standard ($\delta_H 0.00$).

Fourier Transform Infra -Red (FT-IR): FT-IR spectra were obtained on FT-IR Perkin-Elmer spectrometer at a nominal resolution of 2 cm⁻¹.

ESI-MS: HRMS analyses were performed with Q-TOF YA263 high resolution (Waters Corporation) instruments by +ve mode electrospray ionization.

Rheometer: The rheological measurements were carried out on a TA-ARG2 rheometer using a steel parallel plate with 60 mm diameter at 25 °C with 1.0 mm Gap spacing for all gel samples. The dynamic shear moduli (G' and G'') were recorded in the linear viscoelastic regime at a strain of $\gamma = 1\%$ as a function of angular frequency (0.1–100 rad/s).

UV-Vis Spectroscopy: UV-visible absorption measurements were carried out on U-4100 spectrophotometer; HITACHI spectrometer, with a scan rate of 500 nm/min.

Scanning Electron Microscopy (SEM): High resolution SEM was performed on a Zeiss microscope; SUPRA 55VP-Field Emission Scanning Electron Microscope. High performance variable pressure FE-SEM with patented GEMINI column technology. Schottky type field emitter system, single condenser with crossover-free beam path. Resolution: 1.0 nm at 15 kV; 1.6 nm at 1 kV high vacuum mode. 2.0 nm at 30 kV at variable pressure mode.

Thermo Gravimetric Analysis: Thermal studies were carried out using a Mettler Toledo TGA/SDTA 851e instrument at a heating rate of 10 °C min⁻¹.

Transmission Electron Microscopy:

The gels were sliced at 30 nm thick films using microtome facility (Power Tome PC, RMC Boeckeler). The sliced film was dried under vacuum and was analysed using Transmission Electron Microscope; TEM (JEM-2100F) facility at 120 kV.

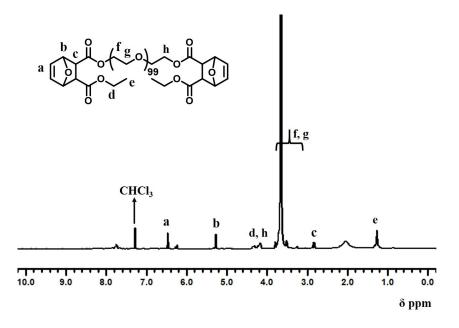


Figure S1: ¹H NMR spectrum of compound 3 in CDCl₃

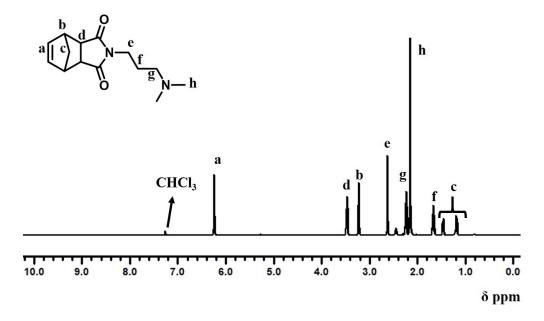


Figure S2: ¹H NMR spectrum of compound 4 in CDCl₃

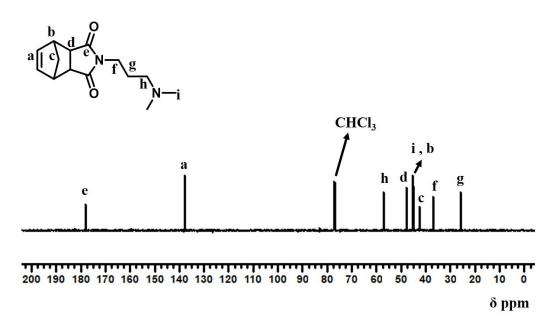


Figure S3: ¹³C NMR spectrum of compound 4 in CDCl₃

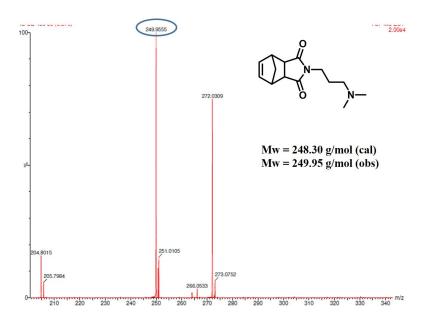


Figure S4: ESI-MS of compound 4 confirming its formation

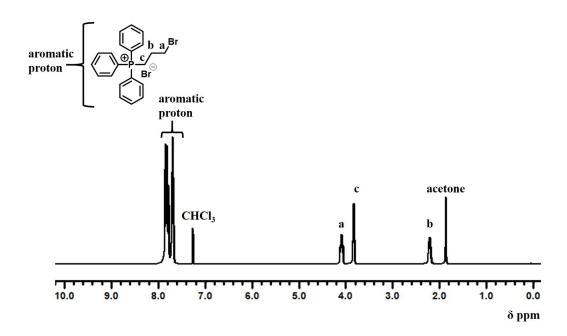


Figure S5: ¹H NMR spectrum of compound 5 in CDCl₃

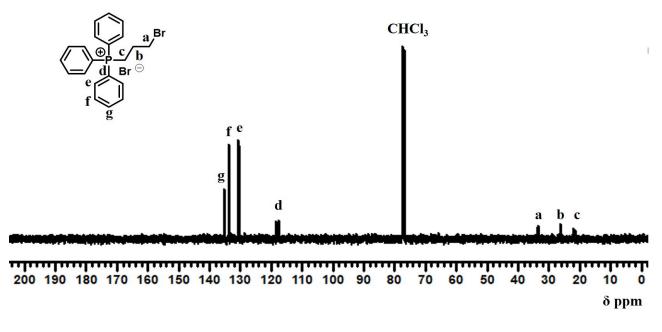


Figure S6: ¹³C NMR spectrum of compound 5 in CDCl₃

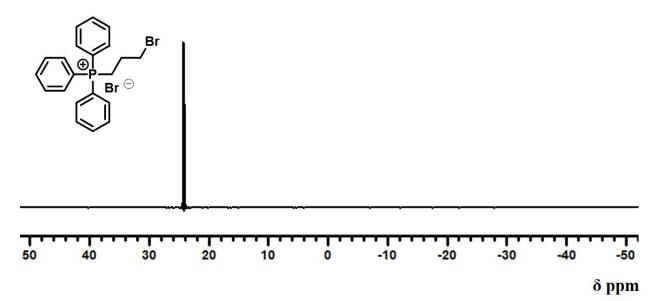


Figure S7: ³¹P NMR of compound 5 in CDCl₃

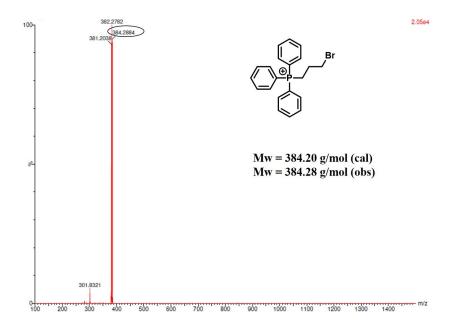


Figure S8: ESI-MS of compound 5 confirming its formation

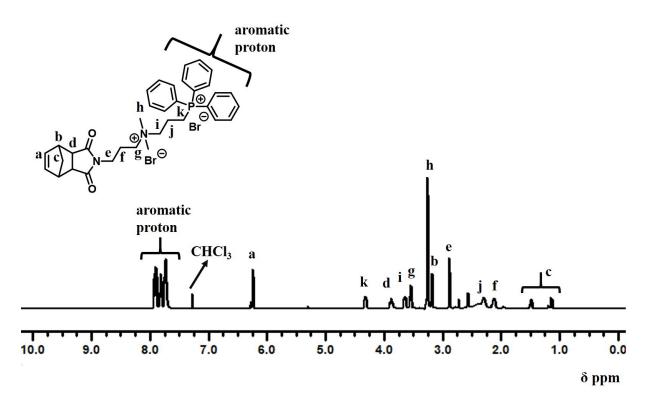


Figure S9: ¹H NMR spectrum of compound 6 in CDCl₃

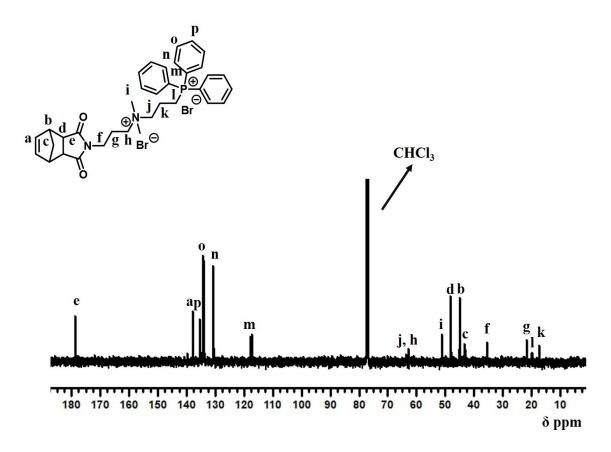


Figure S10: ¹³C NMR spectrum of compound 6 in CDCl₃

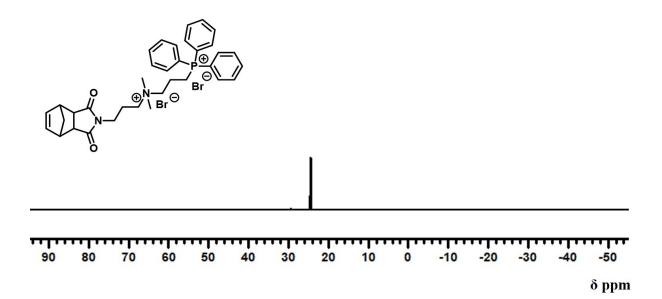


Figure S11: ³¹P NMR of compound 6 in CDCl₃

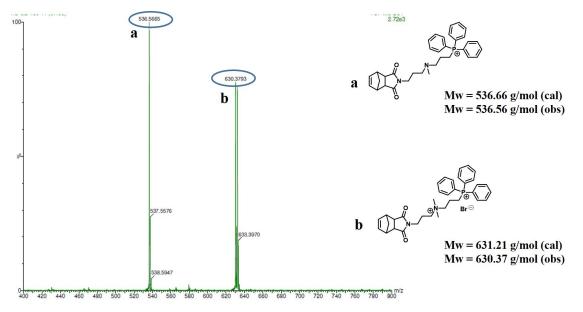


Figure S12: ESI-MS of compound 6 confirming its formation

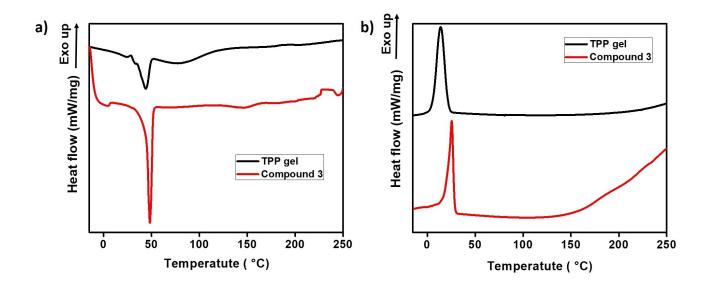


Figure S13: Differential Scanning Calorimetry of Compound 3 and TPP gel for a) heating and b) cooling cycle respectively.

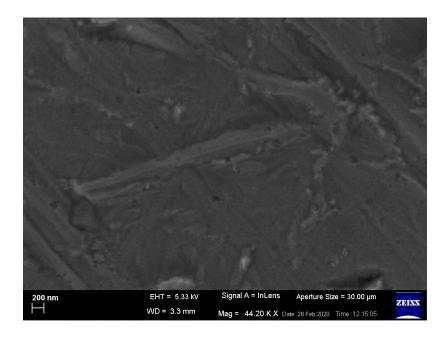


Figure S14: FE-SEM image of the as prepared TPP gel.

Solvent	Solubility parameter, δ _{solvent} (cal cm ⁻³) ^{1/2}		
Water	23.40		
DMSO	13.03		
DMF	12.14		
1,4- dioxane	10.02		
DCM	9.93		
THF	9.52		

Figure S15: Hansen solubility parameter of the solvents used.

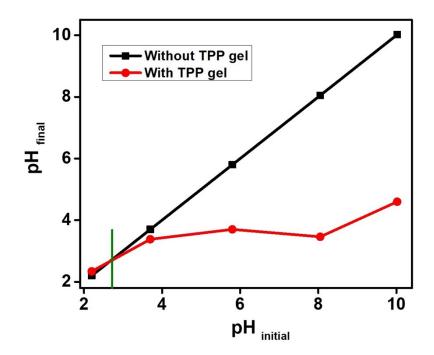


Figure S16: pHzpc data of the TPP gel.

Equation S1: Formula for dye adsorption

$$dye \ removal \ (\%) \ = \ \frac{C_0 \ - \ C_t}{C_0} \times 100$$

where $C_0 (mg/L)$ and $C_t (mg/L)$ represent the initial and final (or at time t) concentration of dye in aqueous solution.

Table S1. Adsorption capacity of different chemical adsorbents for the removal of azodyes as recognised by their maximum adsorption capacity (mg of dye/g of adsorbent)

Adsorbent	Dye sorbate	Maximum removal efficiency (mg/g)	Reference
Granular activated carbon	Congo red	9.1	1
Zeolite	DB 71	13.7	2
Graphene oxide	acid orange 8	29.0	3
Cellulose/chitosan hydrogel	Congo red	40	4
Chitosan halloysite nanotubes	Congo red	41.5	5
Magnetic graphene/chitosan (MGCh) nanocomposite	Acid orange 7	42.7	6
Chemically modified brown macroalga	Acid orange 2	45.47	7
Amberlite IRA-958	Acid orange 7	50	8
Multiwalled carbon nanotube	tartrazine	84.0	9
Thiol-norbornene based photo crosslinked network	Acid orange 7	98.6	This work
Graphitized and heteroatom doped porous carbon	Acid orange 7	285.71	10

Table S2. Adsorption capacity of different bio-adsorbents for the removal of azo dye acid orange 7 as recognised by their maximum adsorption capacity (mg of dye/g of adsorbent)

Adsorbent	Dye sorbate	Maximum removal efficiency (mg/g)	Reference
PR leaves	Acid orange 7	7.52	11
Paulownia tomentosa Steud leaf powder	Acid orange 52	10.5	12
Canola stalks (CS)	Acid orange 7	25.06	13
Spent brewery grains	Orange II	28.54	14
Brown macro alga Stoechospermum marginatum	Acid orange 7	35.62	15

References:

- 1 D. Olivo-Alanis, R. B. Garcia-Reyes, L. H. Alvarez and A. Garcia-Gonzalez, J. *Hazard. Mater.*, 2018, **347**, 423.
- 2 N. Mirzaei, A. H. Mahvi and H. Hossini, *Adsorpt. Sci. Technol.*, 2018, 36, 80.
- 3 W. Konicki, M. Aleksandrzak, D. Moszyński and E. Mijowska, *J. Colloid Interface Sci.*, 2017, **496**, 188.
- 4 M. Li, Z. Wang and B. Li, *Desalin. Water Treat.*, 2016, **57**, 16970.
- 5 S. Vahidhabanu, A. I. Adeogun and B. R. Babu, *ACS Omega*, 2019, 4, 2425.
- 6 S. Sheshmani, A. Ashori and S. Hasanzadeh, Int. J. Biol. Macromol., 2014, 68, 218.
- 7 M. Kousha, E. Daneshvar, M. S. Sohrabi, M. Jokar and A. Bhatnagar, *Chem. Eng. J.*, 2012, **192**, 67.
- 8 M. Greluk and Z. Hubicki, *Desalination*, 2011, **278**, 219.

- 9 J. Goscianska and R. Pietrzak, *Catal. Today*, 2015, **249**, 259.
- 10 Z. Liu, F. Zhang, T. Liu, N. Peng and C. Gai, J. Environ. Manage., 2016, 182, 446.
- 11 R. Rehman, S. J. Muhammad and M. Arshad, 2019, 1.
- 12 F. Deniz and S. D. Saygideger, *Bioresour. Technol.*, 2010, 101, 5137.
- 13 Y. Hamzeh, A. Ashori, E. Azadeh and A. Abdulkhani, *Mater. Sci. Eng. C*, 2012, **32**, 1394.
- 14 E. R. García, R. L. Medina, M. M. Lozano, I. H. Pérez, M. J. Valero and A. M. Maubert Franco, *Materials (Basel)*., 2014, **7**, 8037.
- 15 M. Kousha, E. Daneshvar, M. S. Sohrabi, M. Jokar and A. Bhatnagar, *Chem. Eng. J.*, 2012, **192**, 67.